Advertisement

Automatic Extraction of Gameplay Design Expertise: An Approach Based on Semantic Annotation

  • Kaouther Raies
  • Maha Khemaja
  • Yemna Mejbri
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 176)

Abstract

A Game Based Learning System (GBLS) constitutes an interesting learning environment. However, many problems are facing the general adoption of learning approaches based on this system. For instance, complexity of GBLS design process and problems of integrating learning outcomes with fun aspects constitute the major challenges. Therefore, novice game designer have not only to acquire specific skills and expertise but also to acquire them in an efficient and active pedagogical manner. For that aim, extraction and representation of knowledge related to GBLSs design become necessary to render possible accessibility and transfer of that knowledge to novice actors and further to meet aforementioned challenges. In this context the use of learning ontology techniques based on semantic annotation of gameplay description seems promising as it facilitates knowledge extraction, elicitation process, and grants more formal knowledge representation which allows answering to growing needs of sharing data within and across organizations and actors.

Keywords

GBLS Gameplay Automatic knowledge extraction Ontology learning 

References

  1. 1.
    Giroux, P., Brunessaux, S., Brunessaux, S., Doucy, J., Dupont, G., Grilheres, B., Mombrun, Y., Saval, A.: Weblab: an integration infrastructure to ease the development of multimedia processing applications. In: ICSSEA (2008)Google Scholar
  2. 2.
    Corti, K.: Games Based Learning. A Serious Business Application. PIXELearning Limited (2006)Google Scholar
  3. 3.
    Djaouti, D.: Game Design: Considérations théoriques et techniques sur la création de jeux vidéo à vocation utilitaire, Doctoral dissertation, Toulouse 3 (2011)Google Scholar
  4. 4.
    Raies, K., Khemaja, M., Brahem, R.: Towards game based learning design process based on semantic service oriented architecture (SSOA). In: Proceedings of the 7th European Conference on Games-Based Learning, Porto, pp. 698–705 (2013)Google Scholar
  5. 5.
    Hoffman, R.: The problem of extracting the knowledge of experts fkom the perspective of experimental psychology. AI Mag. 8(2), 53–67 (1987)Google Scholar
  6. 6.
    Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution. LNCS (LNAI), vol. 6050, pp. 134–166. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20795-2_6 CrossRefGoogle Scholar
  7. 7.
    Valarakos, A.G., Paliouras, G., Karkaletsis, V., Vouros, G.A.: A name-matching algorithm for supporting ontology enrichment. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 381–389. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005). ISBN: 1-58603-523-1Google Scholar
  9. 9.
    Chen, S., Michael, D.: Serious Games: Games That Educate, Train and Inform. Thomson Course Technology, USA (2005)Google Scholar
  10. 10.
    Zyda, M.: From visual simulation to virtual reality to games. Computer 38(9), 25–32 (2005)CrossRefGoogle Scholar
  11. 11.
    Alvarez, J., Michaud, L.: Serious Games: Advergaming, edugaming, training and more. IDATE, France (2008)Google Scholar
  12. 12.
    Raies, K., Rebhi, K., Khemeja, M.: Towards ontology of gameplay: application to game based learning systems. In: Deuxième Journée AIM Systèmes d’Information & Serious Games, AIM SG 2014, Paris, France, pp. 26–37 (2014)Google Scholar
  13. 13.
    Paquette, G.: Modélisation des connaissances et des compétences Un langage graphique pour concevoir et apprendre (2002). ISBN: 978-2-7605-1163-7Google Scholar
  14. 14.
    Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies, Technical report, University of Toronto, Canada (1995)Google Scholar
  15. 15.
    Lopez, M.F., Gomez-perez, A., Sierra, J.: Building a chemical ontology using methontology and the ontology design environment. IEEE Intell. Syst. Appl. 14(1), 37–45 (1999)CrossRefGoogle Scholar
  16. 16.
    Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology, Stanford Knowledge Systems Laboratory Technical report KSL-01-05 and Stanford Medical Informatics Technical Report SMI 0880 (2001)Google Scholar
  17. 17.
    General Architecture for text engineering, GATE.ac.uk - index.htmlGoogle Scholar
  18. 18.
    Cunningham, H., Maynard, D., Bontcheva, K.: Gate: an architecture for development of robust HLT applications. In: Proceedings of ACL (2002)Google Scholar
  19. 19.
    Dimitrov, M., Simov, A., Momtchev, V., Konstantinov, M.: WSMO studio – a semantic web services modelling environment for WSMO. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 749–758. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Marie-Francine, M.: Information Extraction: Algorithms and Prospects in a Retrieval Context. Springer, Netherlands (2006)zbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  1. 1.Faculty of Economic Sciences and Management of SfaxSfaxTunisia
  2. 2.The Higher Institute of Applied Sciences and Technology of SousseSousseTunisia
  3. 3.National School of Computer Sciences of TunisiaMannoubaTunisia
  4. 4.Prince Research Group, ISITComUniversity of SousseSousseTunisia

Personalised recommendations