Discovery of Structural and Temporal Patterns in MOOC Discussion Forums

  • Tobias Hecking
  • Andreas Harrer
  • H. Ulrich Hoppe
Part of the Lecture Notes in Social Networks book series (LNSN)


This work aims to explore methods to investigate the structure of knowledge exchange in discussion forums in massive open online courses (MOOCs) explicitly taking into account changing patterns over time. The paper covers three different aspects of forum analysis combining different methods. First, an approach for the extraction of dynamic communication networks from forum data based on the classification of forum posts is presented that takes into account the information exchange relations between forum users. Second, measures that characterise users according to information seeking and information giving behaviour are introduced and the development of individual actors is analysed. Third, blockmodelling and tensor decomposition approaches for reducing a dynamic network to an interpretable macro-structure reflecting knowledge exchange between clusters of actors over time are evaluated. This allows for the analysis of the communication structure related to information exchange between participants of large scale online courses in different aspects. The utility of the analytics framework is demonstrated along two case studies on forum discussions in two MOOCs offered on the Coursera platform.


Time Slice Knowledge Exchange Discussion Forum Corporate Finance Information Seek 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamic LA, Zhang J, Bakshy E, Ackerman MS (2008) Knowledge sharing and yahoo answers: everyone knows something. In: Proceedings of the 17th international conference on World Wide Web. ACM, New York (2008), pp 665–674Google Scholar
  2. 2.
    Anderson A, Huttenlocher D, Kleinberg J, Leskovec J (2014) Engaging with massive online courses. In: Proceedings of the 23rd international conference on World Wide Web. ACM, New York, pp 687–698. doi:10.1145/2566486.2568042Google Scholar
  3. 3.
    Bader BW, Harshman RA, Kolda TG (2007) Temporal analysis of semantic graphs using ASALSAN. In: 7th IEEE international conference on data mining. ICDM 2007, pp 33–42. doi:10.1109/ICDM.2007.54Google Scholar
  4. 4.
    Borgatti SP, Everett MG (1993) Two algorithms for computing regular equivalence. Soc Networks 15(4):361–376. doi:10.1016/0378-8733(93)90012-ACrossRefGoogle Scholar
  5. 5.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32. doi:10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  6. 6.
    Clow D (2013) MOOCs and the funnel of participation. In: Proceedings of the 3rd international conference on learning analytics and knowledge, LAK’13, pp 185–189. ACM, New York. doi:10.1145/2460296.2460332CrossRefGoogle Scholar
  7. 7.
    Cortes C, Pregibon D, Volinsky C (2001) Communities of interest. In: Proceedings of the 4th international conference on advances in intelligent data analysis (IDA), pp 105–114Google Scholar
  8. 8.
    Cui Y, Wise AF (2015) Identifying content-related threads in MOOC discussion forums. In: Proceedings of the 2nd ACM conference on learning @ scale, L@S’15. ACM, New York, pp 299–303. doi:10.1145/2724660.2728679Google Scholar
  9. 9.
    Doreian P, Batagelj V, Ferligoj A, Granovetter M (2004) Generalized blockmodeling (Structural analysis in the social sciences). Cambridge University Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov Data 5(2):10:1–10:27. doi:10.1145/1921632.1921636Google Scholar
  11. 11.
    Furtado A, Andrade N, Oliveira N, Brasileiro F (2013) Contributor profiles, their dynamics, and their importance in five Q&A sites. In: Proceedings of the 2013 conference on computer supported cooperative work. ACM, New York, pp 1237–1252Google Scholar
  12. 12.
    Gauvin L, Panisson A, Cattuto C (2014) Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9(1):e86028. doi:10.1371/journal.pone.0086028CrossRefGoogle Scholar
  13. 13.
    Gillani N, Eynon R (2014) Communication patterns in massively open online courses. Internet High Educ 23:18–26. doi:10.1016/j.iheduc.2014.05.004CrossRefGoogle Scholar
  14. 14.
    Gillani N, Yasseri T, Eynon R, Hjorth I (2014) Structural limitations of learning in a crowd: communication vulnerability and information diffusion in MOOCs. Sci Rep 4:6447. doi:10.1038/srep06447CrossRefGoogle Scholar
  15. 15.
    Harrer A, Schmidt A (2013) Blockmodelling and role analysis in multi-relational networks. Soc Netw Anal Min 3(3):701–719. doi:10.1007/s13278-013-0116-xCrossRefGoogle Scholar
  16. 16.
    Harrer A, Zeini S, Ziebarth S (2010) Visualisation of the dynamics for longitudinal analysis of computer-mediated social networks-concept and exemplary cases. In: Memon N, Alhajj R (eds) From sociology to computing in social networks: theory, foundations and applications. Springer, Vienna, pp 119–134. doi:10.1007/978-3-7091-0294-7_7CrossRefGoogle Scholar
  17. 17.
    Hecking T, Hoppe HU, Harrer A (2015) Uncovering the structure of knowledge exchange in a MOOC discussion forum. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, ASONAM’15. ACM, New York, pp 1614–1615. doi:10.1145/2808797.2809359CrossRefGoogle Scholar
  18. 18.
    Hoppe HU, Göhnert T, Steinert L, Charles C (2014) A web-based tool for communication flow analysis of online chats. CEUR. Google Scholar
  19. 19.
    Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. In: Dodge Y (ed) Statistical data analysis based on the L1-norm and related methods. North-Holland, Amsterdam, pp 406–416Google Scholar
  20. 20.
    Kim J, Shaw E, Feng D, Beal C, Hovy E (2006) Modeling and assessing student activities in on-line discussions. In: Proceedings of the AAAI workshop on educational data miningGoogle Scholar
  21. 21.
    Kim SN, Wang L, Baldwin T (2010) Tagging and linking web forum posts. In: Proceedings of the 14th conference on computational natural language learning, CoNLL’10. Association for Computational Linguistics, Stroudsburg, pp 192–202Google Scholar
  22. 22.
    Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500. doi:10.1137/07070111XMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lerner J (2005) Role assignments. In: Brandes U, Erlebach T (eds) Network analysis. Lecture notes in computer science, vol 3418. Springer, Berlin, pp 216–252. doi:10.1007/978-3-540-31955-9_9CrossRefGoogle Scholar
  24. 24.
    Mitchell M (1998) An introduction to genetic algorithms. MIT Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th international conference on machine learning, pp 809–816Google Scholar
  26. 26.
    Ó Duinn P, Bridge D (2014) Collective classification of posts to internet forums. Case-based reasoning research and development, vol 8765. Springer, Cham, pp 330–344. doi:10.1007/978-3-319-11209-1_24Google Scholar
  27. 27.
    Pattison P (2009) Algebraic models for social networks. Encyclopedia of complexity and systems science. Springer, New York, pp 8291–8306. doi:10.1007/978-0-387-30440-3_492Google Scholar
  28. 28.
    Ramesh A, Goldwasser D, Huang B, Daume III, H, Getoor L (2014) Understanding MOOC discussion forums using seeded LDA. In: Proceedings of the 9th ACL workshop on innovative use of NLP for building educational applications. ACL, PortlandGoogle Scholar
  29. 29.
    Rossi LA, Gnawali O (2014) Language independent analysis and classification of discussion threads in Coursera MOOC forums. In: Proceedings of the 15th IEEE international conference on information reuse and integration, pp 654–661. doi:10.1109/IRI.2014.7051952Google Scholar
  30. 30.
    Stump G, DeBoer J, Whittinghill J, Breslow L (2013) Development of a framework to classify MOOC discussion forum posts: methodology and challenges. Report (available online (26/09/2016)).
  31. 31.
    Wasserman S, Faust K (1994) Social network analysis: methods and applications. Structural analysis in the social sciences, vol 1. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  32. 32.
    White DR, Reitz KP (1983) Graph and semigroup homomorphisms on networks of relations. Soc Networks 5(2):193–234MathSciNetCrossRefGoogle Scholar
  33. 33.
    Whittaker S, Terveen L, Hill W, Cherny L (2003) The dynamics of mass interaction. In: From Usenet to CoWebs. Springer, London, pp 79–91CrossRefGoogle Scholar
  34. 34.
    Wiesberg S, Reinelt G (2015) Relaxations in practical clustering and blockmodeling. Informatica 39(3):249–256MathSciNetzbMATHGoogle Scholar
  35. 35.
    Wong JS, Pursel B, Divinsky A, Jansen BJ (2015) An analysis of MOOC discussion forum interactions from the most active users. Social computing, behavioral-cultural modeling, and prediction, vol 9021. Springer, Cham, pp 452–457. doi:10.1007/978-3-319-16268-3_58Google Scholar
  36. 36.
    Zeini S, Göhnert T, Hecking T, Krempel L, Hoppe HU (2014) The impact of measurement time on subgroup detection in online communities. In: Can F, Özyer T, Polat F (eds) State of the art applications of social network analysis. Springer, Cham, pp 249–268. doi:10.1007/978-3-319-05912-9_12CrossRefGoogle Scholar
  37. 37.
    Zhang J, Ackerman MS, Adamic L (2007) Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th international conference on World Wide Web, WWW’07. ACM, New York, pp 221–230. doi:10.1145/1242572.1242603CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tobias Hecking
    • 1
  • Andreas Harrer
    • 2
  • H. Ulrich Hoppe
    • 1
  1. 1.University of Duisburg-EssenDuisburgGermany
  2. 2.University of Applied Sciences DortmundDortmundGermany

Personalised recommendations