Advertisement

Decentralized K-User Gaussian Multiple Access Channels

  • Selma Belhadj AmorEmail author
  • Samir M. Perlaza
Conference paper
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)

Abstract

In this paper, the fundamental limits of decentralized information transmission in the K-user Gaussian multiple access channel (G-MAC), with \(K\geqslant 2\), are fully characterized. Two scenarios are considered. First, a game in which only the transmitters are players is studied. In this game, the transmitters autonomously and independently tune their own transmit configurations seeking to maximize their own transmission rates, R1, , R K , respectively. On the other hand, the receiver adopts a fixed receive configuration that is known a priori to the transmitters. The main result consists of the full characterization of the set of rate tuples (R1, , R K ) that are achievable and stable in the G-MAC when stability is considered in the sense of the η-Nash equilibrium (NE), with \(\eta \geqslant 0\) arbitrarily small. Second, a sequential game in which the two categories of players (the transmitters and the receiver) play in a given order is presented. For this sequential game, the main result consists of the full characterization of the set of rate tuples (R1, , R K ) that are stable in the sense of an η-sequential equilibrium, with \(\eta \geqslant 0\) arbitrarily small.

Keywords

Multiple access channel Gaussian Capacity Decentralized Nash equilibrium Sequential equilibrium 

References

  1. 1.
    S. Belhadj Amor and S. M. Perlaza, “Decentralized K-User Gaussian Multiple Access Channels,” INRIA, Lyon, France, Tech. Rep. RR-8949, Aug. 2016.Google Scholar
  2. 2.
    E. V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games for MIMO multiple access channels with coordination,” IEEE Transactions on Wireless Communications, vol. 8, no. 6, pp. 3182–3192, Jun. 2009.Google Scholar
  3. 3.
    R. Berry and D. Tse, “Shannon meets Nash on the interference channel,” IEEE Transactions on Information Theory, vol. 57, no. 5, May 2011.Google Scholar
  4. 4.
    M. Breton, A. Alj, and A. Haurie, “Sequential Stackelberg equilibria in two-person games,” Journal of Optimization Theory and Applications, vol. 59, no. 1, Oct. 1988.Google Scholar
  5. 5.
    T. M. Cover, Some Advances in Broadcast Channels. Academic Press, 1975, vol. 4, ch. 4.Google Scholar
  6. 6.
    G. He, M. Debbah, and E. Altman, “A Bayesian game-theoretic approach for distributed resource allocation in fading multiple access channels,” EURASIP Journal on Wireless Communications and Networking, pp. 1–12, Jan. 2010.Google Scholar
  7. 7.
    L. Lai and H. El Gamal, “The water-filling game in fading multiple-access channels,” IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 2110–2122, May 2008.Google Scholar
  8. 8.
    P. Mertikopoulos, E. V. Belmega, A. L. Moustakas, and S. Lasaulce, “Distributed learning policies for power allocation in multiple access channels,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp. 96–106, Jan. 2012.Google Scholar
  9. 9.
    J. F. Nash, “Equilibrium points in n-person games,” Proc. of the National Academy of Sciences, vol. 36, pp. 48–49, Jan. 1950.Google Scholar
  10. 10.
    N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory. Cambridge, New York, Melbourne: Cambridge University Press, 2007.Google Scholar
  11. 11.
    S. M. Perlaza, S. Lasaulce, and M. Debbah, “Equilibria of channel selection games in parallel multiple access channels,” EURASIP Journal on Wireless Communications and Networking, vol. 15, pp.n1–23, Dec. 2013.Google Scholar
  12. 12.
    S. M. Perlaza, R. Tandon, H. V. Poor, and Z. Han, “Perfect output feedback in the two-user decentralized interference channel,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5441–5462, Oct. 2015.Google Scholar
  13. 13.
    V. H. Stackelberg, Marketform und Gleichgewicht. Oxford University Press, 1934.Google Scholar
  14. 14.
    A. D. Wyner, “Recent results in the Shannon theory,” IEEE Transactions on Information Theory, vol. 20, no. 1, pp. 2–10, Jan. 1974.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INRIAVilleurbanneFrance

Personalised recommendations