Skip to main content

Ecological, Economical and Life Cycle Assessment of Algae and Its Biofuel

  • Chapter
  • First Online:
Algal Biofuels

Abstract

In this communication the diverse potential of various algal species is analysed in terms of ecological, economical and bioenergy production. As the available methods of pollution remediation and fertilizers are high in cost and are not friendly for the environment. The biochemical constituents of algae like protein, carbohydrates and lipids have been used in different industries of food, cosmetics and medicines. Algal protein is high in demands over the world due to its high nutrient value and organically produced nature. The algal biomass contains up to 50% oil contents in the form of triglycerides and can be easily converted to alkyl esters which may become good substitutes for petrochemical diesel. Due to the first organisms of food chain in aquatic ecosystems, algae have great ecological importance. Algae have also been found suitable for the remediation of contaminants (heavy metals, pesticides, dyes, etc.) from the polluted water bodies and this method is popularized as phycoremediation. The lipid extracted from algae has enormous potential to produce biodiesel which may become an important alternative to fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Am J Environ Sci 6(3):230–237

    Article  CAS  Google Scholar 

  • Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801

    Article  CAS  Google Scholar 

  • Banerjee M, Mishra S, Chatterjee J (2004) Scavenging of nickel and chromium toxicity in Aulosira fertlilissima by immobilization : effect on nitrogen assimilation enzymes. Electron J Biotechnol 7:302–309

    Article  Google Scholar 

  • Becker EW (1994) Microalgae-biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  • Bhadury P, Wright CP (2004) Exploitation of marine algae: biogenic compounds for potential antifouling application. Planta 219(561):578

    Google Scholar 

  • Bolin AP, Macedo RC, Marin DP, Barros MP, Otton R (2010) Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes. Cell Biol Toxicol 26(5):457–467

    Article  CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Bouhlal R, Haslin C, Chermann JC, Colliec-jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergesenie llathuyoides (Rhodophyta, Ceramiales). Mar Drugs 9:1187–1209

    Article  CAS  Google Scholar 

  • Cain A, Vannela R, Woo LK (2008) Cyanobacteria as a biosorbent for mercuric ion. Bioresour Technol 99:6578–6586

    Article  CAS  Google Scholar 

  • Çelekli A, Bozkurt H (2011) Bio-Sorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination 275:141–147

    Article  Google Scholar 

  • Çelekli A, Geyik F (2011) Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria: application of isotherm and kinetic model. Bioresour Technol 102:5634–5638

    Article  Google Scholar 

  • Chacoón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods-possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675

    Article  Google Scholar 

  • Chakravarty P, Bauddh K, Kumar M (2015) Remediation of dyes from aquatic ecosystems by biosorption method using algae. In: Singh B, Bauddh K, Bux F (eds) Algae and environmental sustainability, Springer, New Delhi, India, pp 97–106

    Google Scholar 

  • Chojnacka K, Chojnacki A, Gόrecka H (2004) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  Google Scholar 

  • Chong KH, Volesky B (1995) Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 47:451–460

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Dayong S, Jing L, Shuju G, Lijun H (2008) Antithrombotic effect of romophenol, the alga-derived thrombin inhibitor. J Biotechnol 136(577):588

    Google Scholar 

  • De Felício R, De Albuquerque S, Young MCM, Yokoya NS, Debonsi HM (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769

    Article  Google Scholar 

  • Delucchi MA (2003) A lifecycle emissions model (LEM): lifecycle emissions from transportation fuels, motor vehicles, transportation modes, electricity use, heating and cooking fuels. Main report UCD-ITS-RR-03-17.

    Google Scholar 

  • Devi GK, Manivannan K, Thirumaran G, Rajathi FAA, Anantharaman P (2011) In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac J Trop Med 4:205–211

    Article  Google Scholar 

  • Dixit S, Singh DP (2014) An evaluation of Phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. J Appl Phycol 26:1331–1342

    Article  CAS  Google Scholar 

  • El-Enany AE, Issa AA (2000) Cynobacteria as a biosorbent of heavy metals in sewage waste water. Environ Toxicol Pharmacol 8:95–101

    Article  CAS  Google Scholar 

  • El-Sheekh MM, El-Naggar AH, Osman MEH, El-Mazaly E (2003) Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Braz J Plant Physiol 15:159–166

    Article  CAS  Google Scholar 

  • Fenical W (1976) Chemical variation in a new bromochamigrene derivative from the red seaweed Laurencia pacifica. Phytochemistry 15(4):511–512

    Article  CAS  Google Scholar 

  • Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98

    Google Scholar 

  • Jeraci J, Vansoest P (1986) In: Spiller G (ed) Handbook of dietary fibre in human nutrition. CRD Press, Boca Raton, FL, pp 203–299

    Google Scholar 

  • Kamaraj R, Muthukannan SK, Nooruddin T (2011) Adsorbtion isotherms for Cr (VI) by two immobilized marine cyanobacteria. Ann Microbiol 62:241

    Google Scholar 

  • Khalil Z, Asker MS, El-Sayed S, Kobbia I (2010) Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol 26:1225–1231

    Article  CAS  Google Scholar 

  • Kim SK, Karadeniz F (2011) Anti-HIV activity of extracts and compounds from marine algae. Adv Food Nutr Res 64(255):265

    Google Scholar 

  • Kim SK, Thomas NV, Li X (2011) Anticancer compounds from marine macroalgae and their application as medicinal foods. Adv Food Nutr Res 64(213):224

    CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2008) Metal–salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochem 43:598–604

    Article  CAS  Google Scholar 

  • Klinthong W, Yang Y-H, Huang C-H, Hung ST (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res 15:712–742

    CAS  Google Scholar 

  • Kumar D, Korstad J, Singh B (2015) Life cycle assessment of algal biofuels. In: Singh B, Bauddh K, Bux F (eds) Algae and environmental sustainability, Springer, New Delhi, India, pp 165–181

    Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526

    Article  CAS  Google Scholar 

  • Liping DB, Xiaobin Z, Yingying SB, Hua SB, Xinting WA (2008) Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chin J Oceanol Limnol 26(1):45–49

    Article  Google Scholar 

  • Malla FA, Khan SA, Sharma R, Gupta GK, Abraham G (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349

    Article  Google Scholar 

  • Mallick N (2003) Biotechnological potential of Chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions. World J Microbiol Biotechnol 19:695–701

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94

    Article  CAS  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Na HJ, Moon PD, Lee HJ, Kim HR, Chae HJ, Shin T, Seo Y, Hong SH, Kim HM (2005) Regulatory effect of atopic allergic reaction by Carpopeltis affinis. J Ethnopharmacol 101(43):48

    Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipid. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8

    Article  Google Scholar 

  • Ono, E., Koshimizu, H. (2002) Significance of the closed artificial ecosystem approach for urban andnatural landscape studies. In: The 5th international sympsium of Japan, Korea and China on landscape architecture, pp 215–221

    Google Scholar 

  • Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. In: Proceedings 2nd annual conference on carbon sequestration, Alexandria, pp 1–7

    Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for green house gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19(1):31–39

    Article  CAS  Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour Technol 135:232–238

    Article  CAS  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS (2013) Integrated CO2capture, wastewater treatment and biofuel production by microalgae culturing- areview. Renewable Sustainable Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Richardson JS (1993) Free radicals in the genesis of Alzheimer s disease. Ann N Y Acad Sci 695(73):76

    Google Scholar 

  • Richmond A (2007) Handbook of microalgal culture biotechnology and applied phycology. Blackwell Science chicester, Chicester, West Sussex

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  • Ryu B, Qian ZJ, Kim MM, Nam KW, Kim SK (2009) Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem 78(2):98–105

    Article  CAS  Google Scholar 

  • Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol 79(5):719–729

    Google Scholar 

  • Serkedjieva J (2004) Antiviral activity of the red marine algae Ceramium rubrum. Phytother Res 18:480–483

    Article  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Simopoulos AP (1999) Nutrition and health. Center for. Genetics, Washington, DC

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91:1915–1929

    Article  CAS  Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toiletries 120:99–106

    Google Scholar 

  • Subramaninan G, Uma L (1996) Cyanobacteria in pollution control. J Sci Ind Res 55:685–692

    Google Scholar 

  • Takeuchi H, Rünger TM (2013) UV light induces the aging-associated progerin. J Invest Dermatol 133(7):1857–1862

    Article  CAS  Google Scholar 

  • Tamilselvan N, Saurav K, Kannabiran K (2012) Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and algal biomass. J Ocean Univ China 11(1):52–58

    Article  CAS  Google Scholar 

  • Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11(1):146–164

    Article  CAS  Google Scholar 

  • Tokuşoglu O, Una MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148

    Article  Google Scholar 

  • Verdy C, Branka JE, Mekideche N (2011) Quantitative assessment of lactate and progerin production in normal human cutaneous cells during normal ageing: effect of an Alaria esculenta extract. Int J Cosmet Sci 33:462–466

    Article  CAS  Google Scholar 

  • Wang HM, Chou YT, Wen ZH, Wang ZR, Chen CH, Ho ML (2013) Novel biodegradable porous scaffold applied to skin regeneration. PLoS One 8(6):56330

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kuldeep Bauddh is thankful to UGC for a UGC Start-up-grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, V., Karela, R.P., Korstad, J., Kumar, S., Srivastava, R., Bauddh, K. (2017). Ecological, Economical and Life Cycle Assessment of Algae and Its Biofuel. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_21

Download citation

Publish with us

Policies and ethics