Skip to main content

Limiting Experiments and Asymptotic Bounds on the Performance of Sequence of Estimators

  • Chapter
  • First Online:
  • 1375 Accesses

Abstract

In this paper, we provide a review of rather selected results among those available in the literature on asymptotic theory of statistical inference. We do not claim an exhaustive review of the relative literature, which, at any rate, could hardly be achieved in the limited space provided for a contributing paper. Instead, we focus mainly on references leading or closely related to our own research results. The discussion encompasses the concepts of limit experiments and asymptotic bounds on the performance of sequences of estimators. The concepts and methodology used are those of contiguity (defined in Definition 1), local asymptotic normality (LAN), local asymptotic mixed normality (LAMN), local asymptotic quadratic (LAQ) (all defined after relations (16.3b) and (16.4) in the paper), and local asymptotic minimax risk of a sequence of estimators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bahadur, R.R. (1960): On the asymptotic efficiency of tests and estimates, Sankhyā, 22, 229-252.

    Google Scholar 

  • Bahadur, R.R. (1967): Rates of convergence of estimates and test statistics. Ann. Math. Statist., 38, 303-324.

    Google Scholar 

  • Basawa, I.V. and Brockwell, P.J. (1984): Asymptotic conditional inference for regular nonergodic models with an application to autoregressive processes. Ann. Statist, 12, 161-171.

    Google Scholar 

  • Basawa, I.V. and Prakasa Rao, B.L.S. (1980): Statistical Inference for Statistical Processes, Academic Press.

    Google Scholar 

  • Basawa, I.V. and Scott, D.J. (1983): Asymptotic optimal inference for non-ergodic models. Lecture Notes in Statistics, 17, Springer-Verlag.

    Google Scholar 

  • Basu, A.K. and Bhattacharya, D. (1988): Local asymptotic mixed normality of log-likelihood based on stopping times. Calcutta Statist. Assoc. Bull., 37, 143-159.

    Google Scholar 

  • Basu, A.K. and Bhattacharya, D. (1990): Weak convergence of randomly stopped log-likelihood ratio statistics to mixed Gaussian process. Calcutta Statist. Assoc. Bull., 39, 137-149.

    Google Scholar 

  • Basu, A.K. and Bhattacharya, D. (1992): On the asymptotic non-null distribution of randomly stopped log-likelihood ratio statistic. Calcutta Statist. Assoc. Bull., 42, 255-260.

    Google Scholar 

  • Basu, A. K. and Bhattacharya, D. (1999): Asymptotic minimax bounds for sequential estimators of parameters in a locally asymptotically quadratic family. Brazilian Journal of Probability and Statistics, 13, 137-148.

    Google Scholar 

  • Basu, D. (1956): The concept of asymptotic efficiency. Sankhyā, 17, 193-196.

    Google Scholar 

  • Bhattacharya, D. and Basu, A. K. (2006): Local asymptotic minimax risk bounds in a locally asymptotically mixture of normal experiments under asymmetric loss. IMS Lecture Notes-Monograph Series, 49, 312-321.

    Google Scholar 

  • Bhattacharya, D. and Roussas, G. G. (1999): On asymptotically efficient tests for autoregressive process. Stoch. Model Appl., 2(1), 17-30.

    Google Scholar 

  • Bhattacharya, D. and Roussas, G. G. (2001): Exponential approximation for randomly stopped locally asymptotically mixture of normal experiments. Stoch. Model Appl., 4(2), 56-71.

    Google Scholar 

  • Bhattacharya, D., Samaneigo, F.J. and Vestrup, E. M. (2002): On the comparative performance of Bayesian and classical point estimators under asymmetric loss, Sankhyā, Ser. B, 64, 230-266.

    Google Scholar 

  • Blackwell, D. (1947): Conditional expectation and unbiased sequential estimation. Ann. Math. Stat., 18, 105-110.

    Google Scholar 

  • Blackwell, D. (1951): Comparison of experiments. Proc. 2nd Berkeley Symp. Math. Stat. Probab., 1, 93-102.

    Google Scholar 

  • Blackwell, D. (1953): Equivalent comparisons of experiments. Ann. Math. Stat., 24, 265-272.

    Google Scholar 

  • Davis, R.B. (1985): Asymptotic inference when the amount of information is random. Proc. Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, 2, L. Le Cam, and R. A. Olson eds., 841-864, Wadsworth, Monterey, California.

    Google Scholar 

  • Efron, B. (1975): Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Statist., 3(6), 1189-1242.

    Google Scholar 

  • Fabian, V. and Hannan, J. (1982): On estimation and adaptive estimation for locally asymptotically normal families. Z.Wahrschelnlichkeitstheoric Und Verw. Gebiete, 59 (4), 459- 478.

    Google Scholar 

  • Fabian, V. and Hannan, J. (1987): Local asymptotic behavior of densities. Statist. Decisions, 5 (1-2), 105-138.

    Google Scholar 

  • Greenwood, P. and Wefelmeyer, W. (1993): Asymptotic minimax of a sequential estimator for a first order autoregressive model. Stochastics and Stochastic Reports, 38, 49-65.

    Google Scholar 

  • Hájek, J. (1962): Asymptotically most powerful rank-order tests. Ann. Math. Statist., 33, 1124 -1147.

    Google Scholar 

  • Hájek, J. (1970): A characterization of limiting distributions of regular estimates. Z.Wahrs-chelnlichkeitstheoric Und Verw. Gebiete, 14, 323-330.

    Google Scholar 

  • Hájek, J. (1972): Local asymptotic minimax and admissibility in estimation. Proc. Sixth Berkeley Symp. Math. Statist. Probab., University of California Press, Berkeley, 1, 175-194.

    Google Scholar 

  • Hájek, J. and Šidák, Z. (1967): Theory of rank tests. Academic Press, New York-London.

    Google Scholar 

  • Ibragimov, I. A. and Has’minskii, R. Z. (1981): Statistical Estimation. Asymptotic Theory, Translated from the Russian by Samuel Kotz. Applications of Mathematics, Springer-Verlag, New York-Berlin.

    Google Scholar 

  • Inagaki, N. (1970): On the limiting distribution of sequence of estimators with uniformity property. Ann. Inst. Statist. Math., 22, 1-13.

    Google Scholar 

  • Jeganathan, P. (1980): An extension of a result of L. Le Cam concerning asymptotical normality. Sankhyā, Ser. A, 42, 146-160.

    Google Scholar 

  • Jeganathan, P. (1982): On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā, Ser. A, 44, 173-212.

    Google Scholar 

  • Jeganathan, P. (1995): Some aspects of asymptotic theory with applications to time series models. Econometric Theory, 2, 818-887.

    Google Scholar 

  • Koul, H.L. and Pflug, G. Ch.(1990): Weakly adaptive estimators in explosive autoregression. Ann. Statist., 18(2), 939-960.

    Google Scholar 

  • Le Cam, L. (1960): Locally asymptotically normal families of distributions. Univ. of California Publications in Statistics, 3, 37-98.

    Google Scholar 

  • Le Cam, L. (1964): Sufficiency and approximate sufficiency. Ann. Math. Stat., 35, 1419-1455.

    Google Scholar 

  • Le Cam, L. (1972): Limit of experiments. Proc. 6th Berkeley Symp. Math. Stat. Probab., 1, 245-261.

    Google Scholar 

  • Le Cam, L. (1986): Asymptotic methods in statistical decision theory. Springer-Verlag, New York.

    Google Scholar 

  • Le Cam, L. and Yang, G.L. (2000): Asymptotics in Statistics, Some Basic Concepts. Lecture notes in Statistics, Springer-Verlag.

    Google Scholar 

  • Loève, M. (1963): Probability Theory (3rd Edition).Van Nostrand, Princeton.

    Google Scholar 

  • Roussas, G.G. (1972): Contiguity of Probability Measures: Some Applications in Statistics. Cambridge Univ. Press.

    Google Scholar 

  • Roussas, G.G. (2014): An Introduction to Measure Theoretic Probability (2nd Edition). Academic Press/ Elsevier, Boson, Massachusetts.

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2002): Exponential approximation of distributions. Teoriya Imovirnostey ta Matematichna Statystika, 66, 108-120. Also, in Theory of Probability and Mathematical Statistics, 66, 119–132 (English version, 2003).

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2007): Asymptotic expansions, exponential approximation and the Hájek-Inagaki representation theorem under a general dependence set-up. Proceedings of 20th Panhelenic Statistical Conference (Invited Keynote address), Nikosia, Cyprus, 45-65.

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2008): Hájek-Inagaki representation theorem under a general stochastic process framework, based on stopping times. Stat. Probab. Lett., 78, 2503- 2510.

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2009): Hájek-Inagaki convolution representation theorem for randomly stopped locally asymptotically mixed normal experiments. Stat. Infer. Stoch. Process, 12, 185-201.

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2010): Asymptotically optimal tests under a general dependence set-up. Jour. of Statistical Research, 44(1), 57-83.

    Google Scholar 

  • Roussas, G.G. and Bhattacharya, D. (2011): Revisiting local asymptotic normality (LAN) and passing on to local asymptotic mixed normality (LAMN) and local asymptotic quadratic (LAQ) experiments. Chapter 17 in Advances in Directional and Linear Statistics, A festschrift for Sreenivasa Rao Jammalamadaka, Eds. Martin T. Wells and Ashis Sengupta, Springer-Verlag, Berlin, 253-280.

    Google Scholar 

  • Roussas, G.G. and Soms, A. (1972): On the exponential approximation of a family of probability measures and representation theorem of Hájek-Inagaki. Ann. Inst. Statist. Math., 25, 27-39.

    Google Scholar 

  • Roychowdhury, S. and Bhattacharya, D. (2008): On the Performance of Estimators of Parameter in Autoregressive Model of Order One and Optimal Prediction under Asymmetric Loss. Model Assisted Statistics and Applications. 3(3), 225-232.

    Google Scholar 

  • Roychowdhury, S. and Bhattacharya, D. (2010): On Estimation of Regression Parameter under Asymmetric Loss, Journal of Applied Probability and Statistics. 5(2), 161-168.

    Google Scholar 

  • Schick, A. (1988): On estimation in LAMN families when there are nuisance parameters present. Sankhyā, Ser. \(A\), 50(2),249-268.

    Google Scholar 

  • Strasser, H. (1985): Mathematical Theory of Statistics. Statistical experiments and asymptotic decision theory. De Gruyter Studies in Mathematics, 7, Walter de Gruyter and Co., Berlin.

    Google Scholar 

  • Sweeting, T. (1992): Asymptotic ancillarity and conditional inference for stochastic processes. Ann. Statist., 20(1), 580-589.

    Google Scholar 

  • Swensen, A. (1980): Asymptotic inference for a class of stochastic processes. Ph.D. thesis, Univ. of California, Berkeley.

    Google Scholar 

  • Taniguchi, M. and Kakizawa, Y. (2000): Asymptotic theory of statistical inference for time series. Springer Series in Statistics, Springer-Verlag.

    Google Scholar 

  • Torgersen, E. (1991): Comparison of Statistical Experiments. Encyclopedia of Mathematics and its Applications, 36, Cambridge University Press, Cambridge.

    Google Scholar 

  • van der Vaart, A.W. (1998): Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press.

    Google Scholar 

  • Wald, A. (1939): Contributions to the theory of statistical estimation and testing hypotheses. Ann. Math. Statist. 10, 299-326.

    Google Scholar 

  • Wald, A. (1943): Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc., 54, 426-482.

    Google Scholar 

  • Wald, A. (1947): An essentially complete class of admissible decision functions. Ann. Math. Statist. 18, 549-555.

    Google Scholar 

  • Wald, A. (1949): Note on consistency of the maximum likelihood estimate. Ann. Math. Statist., 20, 595-601.

    Google Scholar 

  • Wald, A. (1950): Statistical Decision Functions. John Wiley and Sons, New York.

    Google Scholar 

  • Weiss, L. and Wolfowitz, J. (1967): Maximum probability estimators. Ann. Inst. Statist. Math., 19, 193-206.

    Google Scholar 

  • Wolfowitz, J. (1965): Asymptotic efficiency of the maximum likelihood estimator. Theor. Probab. Appl., 10, 247-260.

    Google Scholar 

Download references

Acknowledgements

An early draft of the paper was carefully reviewed by two referees. They made some useful comments and suggestions on the inclusion of additional references, which were adopted and implemented in this version of the paper, and they are gratefully acknowledged herewith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, D., Roussas, G.G. (2017). Limiting Experiments and Asymptotic Bounds on the Performance of Sequence of Estimators. In: Ferger, D., González Manteiga, W., Schmidt, T., Wang, JL. (eds) From Statistics to Mathematical Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-50986-0_16

Download citation

Publish with us

Policies and ethics