Monitoring Patients with Hypoglycemia Using Self-adaptive Protocol-Driven Agents: A Case Study

  • Angelo Ferrando
  • Davide Ancona
  • Viviana Mascardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10093)


Trace expressions are a compact and expressive formalism for specifying complex patterns of actions. In this paper they have been used to model medical protocols and to generate agents able to execute them, also adapting to the context dynamics. To this aim, we extended our previous work on “self-adaptive agents driven by interaction protocols” by allowing agents to be guided by trace expressions instead of the less concise and less powerful “constrained global types”. This extension required a limited effort, which is an advantage of the previous work as it is relatively straightforward to adapt it to accommodate new requirements arising in sophisticated domains.


Medical protocol execution Remote patient monitoring Hypoglycemia in newborns Protocol-driven agents Trace expressions 


  1. 1.
    Aielli, F., Ancona, D., Caianiello, P., Costantini, S., Gasperis, G.D., Marco, A.D., Ferrando, A., Mascardi, V.: FRIENDLY & KIND with your health: human-friendly knowledge-intensive dynamic systems for the e-health domain. In: Bajo, J., et al. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 15–26. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39387-2_2 CrossRefGoogle Scholar
  2. 2.
    Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic checking of protocol conformance in multi-agent systems. In: Proceedings of SAC 2013, pp. 1377–1379 (2013)Google Scholar
  3. 3.
    Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class entities for self-adaptive agents. In: Proceedings of AAMAS 2015, pp. 1019–1029 (2015)Google Scholar
  4. 4.
    Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Runtime verification of fail-uncontrolled and ambient intelligence systems: a uniform approach. Intelligenza Artificiale 9(2), 131–148 (2015)CrossRefGoogle Scholar
  5. 5.
    Ancona, D., Dovier, A.: A theoretical perspective of coinductive logic programming. Fundamenta Informaticae 140(3–4), 221–246 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-monitoring MASs from multiparty global session types in Jason. In: Baldoni, M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol. 7784, pp. 76–95. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37890-4_5 CrossRefGoogle Scholar
  7. 7.
    Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday. LNCS, vol. 9660, pp. 47–64. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30734-3_6 CrossRefGoogle Scholar
  8. 8.
    Annicchiarico, R., Corts, U., Urdiales, C.: Agent Technology and e-Health. Whitestein Series in Software Agent Technologies and Autonomic Computing, 1st edn. Birkhuser, Basel (2008)CrossRefGoogle Scholar
  9. 9.
    Bayliss, E.A., Steiner, J.F., Fernald, D.H., Crane, L.A., Main, D.S.: Descriptions of barriers to self-care by persons with comorbid chronic diseases. Ann. Family Med. 1(1), 15–21 (2003)CrossRefGoogle Scholar
  10. 10.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar
  11. 11.
    Bergenti, F., Poggi, A.: Developing smart emergency applications with multi-agent systems. Int. J. E Health Med. Comm. 1(4), 1–13 (2010)CrossRefGoogle Scholar
  12. 12.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley, Chichester (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bottrighi, A., Chesani, F., Mello, P., Montali, M., Montani, S., Storari, S., Terenziani, P.: Analysis of the GLARE and GPROVE approaches to clinical guidelines. In: Riaño, D., Teije, A., Miksch, S., Peleg, M. (eds.) KR4HC 2009. LNCS (LNAI), vol. 5943, pp. 76–87. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11808-1_7 CrossRefGoogle Scholar
  14. 14.
    Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review. Int. J. Med. Inf. 76(1), 2–12 (2007)CrossRefGoogle Scholar
  15. 15.
    Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inf. 9(1), 427–438 (2013)CrossRefGoogle Scholar
  16. 16.
    Chan, V., Ray, P., Parameswaran, N.: Mobile e-health monitoring: an agent-based approach. IET Commun. 2, 223–230 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, S., Ho, D.W., Li, L., Liu, M.: Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Trans. Cybern. 45(10), 2142–2155 (2015)CrossRefGoogle Scholar
  18. 18.
    Chesani, F., Matteis, P., Mello, P., Montali, M., Storari, S.: A framework for defining and verifying clinical guidelines: a case study on cancer screening. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 338–343. Springer, Heidelberg (2006). doi: 10.1007/11875604_39 CrossRefGoogle Scholar
  19. 19.
    Ferrando, A.: Parametric protocol-driven agents and their integration in JADE. In: Proceedings of CILC (2015)Google Scholar
  20. 20.
    Furmankiewicz, M., Sołtysik-Piorunkiewicz, A., Ziuziański, P.: Artificial intelligence and multi-agent software for e-health knowledge management system. Informatyka Ekonomiczna - Business Informatics 2(32), 51–62 (2014)Google Scholar
  21. 21.
    Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.C.: Agent programming in 3APL. Auton. Agents Multi Agent Syst. 2(4), 357–401 (1999)CrossRefGoogle Scholar
  22. 22.
    Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2005)CrossRefGoogle Scholar
  23. 23.
    Isern, D., Moreno, A.: A systematic literature review of agents applied in healthcare. J. Med. Syst. 40(2), 43: 1–43: 14 (2016)CrossRefGoogle Scholar
  24. 24.
    Jennings, N.R., Sycara, K.P., Wooldridge, M.: A roadmap of agent research and development. Auton. Agents Multi Agent Syst. 1(1), 7–38 (1998)CrossRefGoogle Scholar
  25. 25.
    Jung, Y., Kim, M., Masoumzadeh, A., Joshi, J.B.: A survey of security issue in multi-agent systems. Artif. Intell. Rev. 37(3), 239–260 (2012)CrossRefGoogle Scholar
  26. 26.
    Korstanje, R., Brom, C., Gemrot, J., Hindriks, K.V.: A comparative study of programming agents in POSH and GOAL. In: Proceedings of ICAART 2016, pp. 192–203. SciTePress (2016)Google Scholar
  27. 27.
    Lesser, V., Ortiz Jr., C.L., Tambe, M.: Distributed sensor networks: a multiagent perspective, vol. 9. Springer Science & Business Media (2012)Google Scholar
  28. 28.
    Mascardi, V., Ancona, D.: Attribute global types for dynamic checking of protocols in logic-based multiagent systems. TPLP 13(4-5-Online-Supplement) (2013)Google Scholar
  29. 29.
    Meystre, S.: The current state of telemonitoring: a comment on the literature. Telemed. J. e Health 11(1), 63–69 (2005)CrossRefGoogle Scholar
  30. 30.
    Wight, N., Marinelli, K.A.: ABM clinical protocol #1: guidelines for blood glucose monitoring and treatment of hypoglycemia in term and late-preterm neonates. Breastfeed. Med. 1(3), 178–184 (2006)CrossRefGoogle Scholar
  31. 31.
    Nunes, I., Choren, R., Nunes, C., Fábri, B., Silva, F., de Carvalho, G.R., de Lucena, C.J.P.: Supporting prenatal care in the public healthcare system in a newly industrialized country. In: Proceedings of AAMAS 2010, pp. 1723–1730 (2010)Google Scholar
  32. 32.
    Rosaci, D., Sarné, G.M., Garruzzo, S.: Integrating trust measures in multiagent systems. Int. J. Intell. Syst. 27(1), 1–15 (2012)CrossRefGoogle Scholar
  33. 33.
    Sangiorgi, D.: On the origins of bisimulation, coinduction. ACM Trans. Program. Lang. Syst. 31(4), 15: 1–15: 41 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Schwaibold, M., Gmelin, M., von Wagner, G., Schöchlin, J., Bolz, A.: Key factors for personal health monitoring and diagnosis device. In: Mobile Computing in Medicine, vol. 15 of LNI, pp. 143–150. GI (2002)Google Scholar
  35. 35.
    Shakshuki, E.M., Reid, M.: Multi-agent system applications in healthcare: current technology and future roadmap. In: Proceedings of ANT 2015, vol. 52 of Procedia Computer Science, pp. 252–261. Elsevier (2015)Google Scholar
  36. 36.
    Smith, B., Pisanelli, D.M., Gangemi, A., Stefanelli, M.: Clinical guidelines as plans - an ontological theory. Methods Inf. Med. 45(2), 204–210 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Angelo Ferrando
    • 1
  • Davide Ancona
    • 1
  • Viviana Mascardi
    • 1
  1. 1.DIBRISUniversity of GenovaGenoaItaly

Personalised recommendations