nDrites: Enabling Laboratory Resource Multi-agent Systems

  • Katie Atkinson
  • Frans Coenen
  • Phil Goddard
  • Terry R. Payne
  • Luke Riley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10093)


The notion of the multi-agent interconnected scientific laboratory has long appealed to scientists and laboratory managers alike. However, the challenge has been the nature of the laboratory resources to be interconnected, which typically do not feature any kind of agent capability. The solution presented in this paper is that of nDrites, smart agent enablers that are integrated with laboratory resources. The unique feature of nDrites, other than that they are shipped with individual instrument types, is that they poses a generic interface at the “agent end” (with a bespoke interface at the “resource end”). As such, nDrites enable the required inter-connectivity for a Laboratory Resource Multi Agent Systems (LR-MAS). The nDrite concept is both formally defined and illustrated using two case studies, that of analytical monitoring and instrument failure prediction.


Object Type Inductively Couple Plasma Mass Spectrometer Laboratory Resource Laboratory Instrument Sensor Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work described in this paper was conducted as part of the “Dendrites: Enabling Instrumentation Connectivity” Innovate UK funded knowledge transfer partnership project (KTP009603).


  1. 1.
    Ankolekar, A., et al.: DAML-S: web service description for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 348–363. Springer, Heidelberg (2002). doi: 10.1007/3-540-48005-6_27 CrossRefGoogle Scholar
  2. 2.
    Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An abstract architecture for virtual organizations: the THOMAS approach. J. Knowl. Inf. Syst. 29(2), 379–403Google Scholar
  3. 3.
    Ashri, R., Payne, T.R., Luck, M., Surridge, M., Sierra, C., Aguilar, J.A.R., Noriega, P.: Using electronic institutions to secure grid environments. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 461–475. Springer, Heidelberg (2006). doi: 10.1007/11839354_33 CrossRefGoogle Scholar
  4. 4.
    Behrens, T., Hindriks, K.V., Bordini, R.H., Braubach, L., Dastani, M., Dix, J., Hübner, J.F., Pokahr, A.: An interface for agent-environment interaction. In: Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS (LNAI), vol. 6599, pp. 139–158. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28939-2_8 CrossRefGoogle Scholar
  5. 5.
    Atkinson, K., Coenen, F., Goddard, P., Payne, T., Riley, L.: Data stream mining with limited validation opportunity: towards instrument failure prediction. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 283–295. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-22729-0_22 CrossRefGoogle Scholar
  6. 6.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley Series in Agent Technology. Wiley, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instrumentation data to system states: a building block for automated diagnosis and control. In: Proceedings 6th Symposium on Operating Systems Design and Implementation, pp. 231–244 (2004)Google Scholar
  8. 8.
    Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real time data mining-based intrusion detection. Inf. Fusion (Spec. Issue Distrib. Sens. Netw.) 9(3), 344–354 (2008)Google Scholar
  9. 9.
    Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Proceedings 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 578–583 (1997)Google Scholar
  10. 10.
    De Roure, D., Jennings, N.R., Shadbolt, N.: The Semantic Grid: A Future e-Science Infrastructure. Grid Computing-Making the Global Infrastructure a Reality, pp. 437–470 (2003)Google Scholar
  11. 11.
    Foster, I., Jennings, N.R., Kesselman, C.: Brain meets Brawn: why Grid and Agents need each other. In: Proceedings 3rd International Conference on Autonomous Agents and Multi-Agent Systems, New York, USA, pp. 8–15 (2004)Google Scholar
  12. 12.
    Frey, J.G., De Roure, D., schraefel, M.C., Mills, H., Fu, H., Peppe, S., Hughes, G., Smith, G., Payne, T.R.: Context slicing the chemical aether. In: Proceedings 1st International Workshop on Hypermedia and the Semantic Web, Nottingham, UK (2003)Google Scholar
  13. 13.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM SIGMOD Record 34(2), 18–26 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B., Stahl, F.: Data stream mining in ubiquitous environments: state-of-the-art and current directions. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 4(2), 116–138 (2014)CrossRefGoogle Scholar
  15. 15.
    Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall, Boca Raton (2010)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gil, Y.: From data to knowledge to discoveries: Artificial intelligence and scientific workflows. Sci. Program. 17(3), 231–246 (2009)Google Scholar
  17. 17.
    Hamdaqa, M., Tahvildari, L.: Cloud computing uncovered: a research landscape. Adv. Comput. 86, 41–85 (2012)CrossRefGoogle Scholar
  18. 18.
    Jacyno, M., Bullock, S., Geard, N., Payne, T.R., Luck, M.: Self-organising agent communities for autonomic resource management. Adapt. Behav. J. 21(1), 3–28 (2013)CrossRefGoogle Scholar
  19. 19.
    Lawley, R., Luck, M., Decker, K., Payne, T.R., Moreau, L.: Automated negotiation between publishers and consumers of grid notifications. Parallel Process. Lett. 13(4), 537–548 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: GENIus: an integrated environment for supporting the design of generic automated negotiators. Int. J. Comput. Intell. 30(1), 48–70 (2012)MathSciNetGoogle Scholar
  21. 21.
    Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A., Lord, P., Martin, A., Milanesi, L., Moller, S., Schroeder, M., Luck, M.: Agents in bioinformatics, computational and systems biology. Briefings Bioinform. 8(1), 45–59 (2007)CrossRefGoogle Scholar
  22. 22.
    Omicini, A., Ricci, A., Virol, M.: Artifacts in the A&A meta-model for multi-agent systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008)CrossRefGoogle Scholar
  23. 23.
    Payne, T.R.: Web services from an agent perspective. IEEE Intell. Syst. 23(2), 12–14 (2008)CrossRefGoogle Scholar
  24. 24.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002). doi: 10.1007/3-540-48005-6_26 CrossRefGoogle Scholar
  25. 25.
    Schraefel, M.C., Hughes, G., Mills, H., Smith, G., Payne, T., Frey, J.: Breaking the book: translating the chemistry lab book into a pervasive computing lab environment. In: Proceedings SIGCHI Conference on Human Factors in Computing Systems, 24–29 April, Vienna, Austria (2004)Google Scholar
  26. 26.
    Stein, S., Payne, T.R., Jennings, N.R.: Flexible QoS-based service selection and provisioning in large-scale grids. In: Proceedings of UK e-Science All Hands Meeting, HPC Grids of Continental Scope (2008)Google Scholar
  27. 27.
    Stein, S., Payne, T.R., Jennings, N.R.: Flexible selection of heterogeneous and unreliable services in large-scale grids. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 367(1897), 2483–2494 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using redundancy and advance reservations. IEEE Trans. Serv. Comput. 4(2), 125–139 (2011)CrossRefGoogle Scholar
  29. 29.
    Sycara, K., Widoff, S., Klusch, M., Lu, J.: LARKS: dynamic matchmaking among heterogeneous software agents in cyberspace. Auton. Agents Multi-Agent Syst. 5(2), 173–203 (2002)CrossRefGoogle Scholar
  30. 30.
    Szomszor, M., Payne, T.R., Moreau, L.: Automated syntactic medation for web service integration. In: Proceedings IEEE International Conference on Web Services, Chicago, USA (2006)Google Scholar
  31. 31.
    Wassink, I., Rauwerda, H., Vet, P., Breit, T., Nijholt, A.: E-BioFlow: different perspectives on scientific workflows. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds.) BIRD 2008. CCIS, vol. 13, pp. 243–257. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70600-7_19 CrossRefGoogle Scholar
  32. 32.
    Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sciences. Concurrency Comput. Pract. Experience 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  33. 33.
    Weyns, D., Michel, F.: Agent environments for multi-agent systems – a research roadmap. In: Weyns, D., Michel, F. (eds.) E4MAS 2014. LNCS (LNAI), vol. 9068, pp. 3–21. Springer, cham (2015). doi: 10.1007/978-3-319-23850-0_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Katie Atkinson
    • 1
  • Frans Coenen
    • 1
  • Phil Goddard
    • 2
  • Terry R. Payne
    • 1
  • Luke Riley
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.CSols Ltd.RuncornUK

Personalised recommendations