Skip to main content

Estimation of Integrated Volatility

  • Chapter
  • First Online:
Fourier-Malliavin Volatility Estimation

Abstract

The financial econometrics literature mainly focuses on the integrated volatility and cross-volatility on a fixed time horizon. Therefore, this chapter is devoted to the estimation of these quantities. In the context of the Fourier estimation method, the integrated volatilities are computed by simply taking the 0-th Fourier coefficient in formula (2.13). We begin with the study of the univariate estimator, for the ease of notation; nevertheless, the results holding for this case can be easily extended to the multivariate estimator that will be studied in Section 3.3, with special care to be paid for the asynchronous data case. Then, the issue of feasibility for these results is discussed by providing an estimator of the error asymptotic variance, called quarticity. Finally, the properties of the Fourier estimator versus different integrated volatility estimators proposed in the literature are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interested readers can find a deep study of semimartingale theory in Protter (1992).

  2. 2.

    The optimal rate of convergence for a non-parametric estimator of volatility is O(n 1∕2).

  3. 3.

    For an introduction of the concept of stable convergence in law see, e.g., Aldous and Eagleson (1978) and Jacod and Shiryaev (2003).

  4. 4.

    Section A.2.3 in the Appendix A contains a quick review of the Nyquist frequency.

  5. 5.

    Note that the definition of the Realized Volatility is the same as (3.8), but we prefer here to point out the time step size Δ t instead of the number of observations.

  6. 6.

    A more detailed discussion of the convergence of the Realized Volatility-type estimators can be found in Aït-Sahalia and Jacod (2014) Section 6.

  7. 7.

    Asymptotic conditions required for the irregular/asynchronous time grids and detailed proof can be found in Malliavin and Mancino (2009) Theorem 4.4.

  8. 8.

    The notion of Nyquist frequency is discussed in Section A.2.3

References

  • Aït-Sahalia Y, Jacod J (2014) High-Frequency Financial Econometrics. Princeton University Press

    Book  MATH  Google Scholar 

  • Akahori J, Liu NL, Mancino ME, Yasuda Y (2016) The Fourier estimation method with positive semi-definite estimators. Working Paper arXiv:14100112

    Google Scholar 

  • Aldous DJ, Eagleson GK (1978) On mixing and stability of limit theorems. Annals of Probability 6:325–331

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen T, Bollerslev T (1998) Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39(4):885–905

    Article  Google Scholar 

  • Andersen T, Bollerslev T, Lange S (1999b) Forecasting financial market volatility: sample frequency vis-à-vis forecast horizon. Journal of Empirical Finance 6(5):457–477

    Google Scholar 

  • Andersen T, Bollerslev T, Diebold F, Labys P (2003) Modeling and forecasting realized volatility. Econometrica 71:579–625

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen T, Bollerslev T, Meddahi N (2011) Realized volatility forecasting and market microstructure noise. Journal of Econometrics 160:220–234

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen T, Dobrev D, Schaumburg E (2014) A robust neighborhood truncation approach to estimation of integrated quarticity. Econometric Theory 30:3–59

    Article  MathSciNet  MATH  Google Scholar 

  • Bandi FM, Russell JR (2006) Separating market microstructure noise from volatility. Journal of Financial Economics 79(3):655–692

    Article  Google Scholar 

  • Bandi FM, Russell JR (2011) Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations. Journal of Econometrics 160(1):145–159

    Article  MathSciNet  MATH  Google Scholar 

  • Bandi FM, Russel JR, Zhu Y (2008) Using high-frequency data in dynamic portfolio choice. Econometric Reviews 27(1-3):163–198

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Schmiegel J (2008) Time change, volatility, and turbulence. In: Sarychev A, Shiryaev A, Guerra M, Grossinho MR (eds) Mathematical Control Theory and Finance, Springer, pp 29–53

    Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2002) Econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64:253–280

    Article  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Hansen PR, Lunde A, Shephard N (2008) Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica 6:1481–1536

    MATH  Google Scholar 

  • Barndorff-Nielsen OE, Hansen PR, Lunde A, Shephard N (2011a) Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Journal of Econometrics 162(2):149–169

    Google Scholar 

  • Barucci E, Renò R (2001) On measuring volatility of diffusion processes with high frequency data. Economics Letters 74:371–378

    Article  MATH  Google Scholar 

  • Barucci E, Renò R (2002) On measuring volatility and the GARCH forecasting performance. Journal of International Financial Markets, Institutions and Money 12:183–200

    Article  MATH  Google Scholar 

  • Bollerslev T, Zhang L (2003) Measuring and modeling systematic risk in factor pricing models using high-frequency data. Distribution of realized stock return volatility. Journal of Empirical Finance 10:533–558

    Article  Google Scholar 

  • Bouchaud JP, Potters M (2003) Theory of financial risk and derivative pricing: from statistical physics to risk management. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Brandt MW, Diebold FX (2006) A no-arbitrage approach to range-based estimation of return covariances and correlations. Journal of Business 79:61–73

    Article  Google Scholar 

  • Christensen K, Kinnebrock S, Podolskij M (2010) Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data. Journal of Econometrics 159:116–133

    Article  MathSciNet  MATH  Google Scholar 

  • Clement E, Gloter A (2011) Limit theorems in the Fourier transform method for the estimation of multivariate volatility. Stochastic Processes and Their Applications 121:1097–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen KJ, Hawawini GA, Maier SF, Schwartz RA, Whitcomb DK (1983) Friction in the trading process and the estimation of systematic risk. Journal of Financial Economics 12:263–278

    Article  Google Scholar 

  • Corsi F, Audrino F (2010) Realized correlation tick-by-tick. Computational Statistics and Data Analysis 54(11):2372–2382

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna M, Gençay R, Müler UA, Olser RB, Pictet OV (2001) An introduction to high-frequency finance. Academic Press

    Google Scholar 

  • De Jong F, Nijman T (1997) High frequency analysis of lead-lag relationships between financial markets. Journal of Empirical Finance 4:259–277

    Article  Google Scholar 

  • De Pooter M, Martens M, van Dijk D (2008) Predicting the daily covariance matrix for S&P100 stocks using intraday data: but which frequency to use? Econometric Reviews 27:199–229

    Article  MathSciNet  MATH  Google Scholar 

  • Dimson E (1979) Risk measurement when shares are subject to infrequent trading. Journal of Financial Economics 7:197–226

    Article  Google Scholar 

  • Engle R, Colacito R (2006) Testing and valuing dynamic correlations for asset allocation. Journal of Business & Economic Statistics 24(2):238–253

    Article  MathSciNet  Google Scholar 

  • Fleming J, Kirby C, Ostdiek B (2001) The economic value of volatility timing. The Journal of Finance LVI, 1:329–352

    Article  Google Scholar 

  • Fleming J, Kirby C, Ostdiek B (2003) The economic value of volatility timing using realized volatility. Journal of Financial Economics 67:473–509

    Article  Google Scholar 

  • Ghysels E, Sinko A (2011) Volatility forecasting and microstructure noise. Journal of Econometrics 160(1):257–271

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin JE, Oomen RCA (2011) Covariance measurement in presence of non-synchronuous trading andmarket microstructure noise. Journal of Econometrics 160(1):58–68

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen PR, Lunde A (2006a) Consistent ranking of volatility models. Journal of Econometrics 131:97–121

    Google Scholar 

  • Hansen PR, Lunde A (2006b) Realized variance and market microstructure noise (with discussions). Journal of Business and Economic Statistics 24:127–161

    Google Scholar 

  • Harris FHd, McInish TH, Shoesmith GL, Wood RA (1995) Cointegration, error correction, and price discovery on informationally linked security markets. Journal of Financial and Quantitative Analysis 30:563–579

    Google Scholar 

  • Hayashi T, Yoshida N (2005) On covariance estimation of nonsynchronously observed diffusion processes. Bernoulli 11(2):359–379

    Article  MathSciNet  MATH  Google Scholar 

  • Hoshikawa T, Kanatani T, Nagai K, Nishiyama Y (2008) Nonparametric estimation methods of integrated multivariate volatilities. Econometric Reviews 27(1):112–138

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J, Rosenbaum M (2013) Quarticity and other functionals of volatility: efficient estimation. The Annals of Statistics 41:1462–1484

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J, Shiryaev AN (2003) Limit Theorems for Stochastic Processes. 2nd ed. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Jacod J, Li Y, Mykland PA, Podolskij M, Vetter M (2009) Microstructure noise in the continuous case: the pre-averaging approach. Stochastic Processes and their Applications 119:2249–2276

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang GJ, Oomen RCA (2008) Testing for jumps when asset prices are observed with noise - a “swap variance” approach. Journal of Econometrics 144(2):352–370

    Article  MathSciNet  MATH  Google Scholar 

  • Malliavin P, Mancino ME (2009) A Fourier transform method for nonparametric estimation of volatility. The Annals of Statistics 37(4):1983–2010

    Article  MathSciNet  MATH  Google Scholar 

  • Mancino ME, Sanfelici S (2011a) Covariance estimation and dynamic asset allocation under microstructure effects via Fourier methodology. In: Gregoriou GN, Pascalau R (eds) Handbook of Econometrics, Palgrave-MacMillan, London, UK

    Google Scholar 

  • Mancino ME, Sanfelici S (2011b) Estimating covariance via Fourier method in the presence of asynchronous trading and microstructure noise. Journal of Financial Econometrics 9(2):367–408

    Google Scholar 

  • Mancino ME, Sanfelici S (2012) Estimation of quarticity with high frequency data. Quantitative Finance 12(4):607–622

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot B, Van Ness J (1968) Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review 10:422437

    Article  MathSciNet  MATH  Google Scholar 

  • Martens M (2004) Estimating unbiased and precise realized covariances. EFA 2004 Maastricht Meetings Paper 4299

    Google Scholar 

  • Mykland PA (2012) A Gaussian calculus for inference from high frequency data. Annals of Finance 8:235–258

    Article  MathSciNet  MATH  Google Scholar 

  • Nielsen MO, Frederiksen PH (2008) Finite sample accuracy and choice of sampling frequency in integrated volatility estimation. Journal of Empirical Finance 15(2):265–286

    Article  Google Scholar 

  • Oya K (2005) Measurement of volatility of diffusion processes with noisy high frequency data. Proceedings of MODSIM05 available at wwwmssanzorgau/modsim05/papers/oyapdf

    Google Scholar 

  • Precup OV, Iori G (2007) Cross-correlation measures in the high-frequency domain. European Journal of Finance 13(4):319–331

    Article  Google Scholar 

  • Protter P (1992) Stochastic Integration and Differential Equations – A new Approach. Springer Verlag

    MATH  Google Scholar 

  • Scholes M, Williams J (1997) Estimating betas from nonsynchronous data. Journal of Financial Economics 5:309–327

    Article  Google Scholar 

  • Zhang L, Mykland P, Aït-Sahalia Y (2005) A tale of two time scales: determining integrated volatility with noisy high frequency data. Journal of the American Statistical Association 100:1394–1411

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou B (1996) High frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics 14(1):45–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Mancino, M.E., Recchioni, M.C., Sanfelici, S. (2017). Estimation of Integrated Volatility. In: Fourier-Malliavin Volatility Estimation. SpringerBriefs in Quantitative Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-50969-3_3

Download citation

Publish with us

Policies and ethics