Skip to main content

Circulating Tumour Cells in Primary Disease: The Seed for Metastasis

  • Chapter
  • First Online:
Liquid Biopsies in Solid Tumors

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 653 Accesses

Abstract

Metastatic dissemination is the most common cause of death in cancer patients. Traditionally, dissemination has been considered a late event; however it has been suggested that at least in some tumours, cells might leave the primary lesion early in its development. To escape from the primary, tumour cells undergo total or partial epithelial to mesenchymal transition (EMT), become able to unmoor from surrounding epithelial cells and reach the bloodstream. Alone or in groups (clusters), these circulating tumour cells will use their phenotypical flexibility, including properties associated with EMT, stemness, resistance to anoikis and dormancy to survive in the bloodstream, reach, invade and colonise distant organs. In recent years, these cells, which can be detected in the blood or in the bone marrow in the early disease setting, have been studied as prognostic markers as well as a potential source of dynamic information regarding tumour characteristics to guide treatment decisions. Ongoing clinical trials are evaluating the clinical utility of circulating tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ignatiadis M, Reinholz M (2011) Minimal residual disease and circulating tumor cells in breast cancer. Breast Cancer Res 13:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ignatiadis M, Lee M, Jeffrey SS (2015) Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res 21:4786–4800

    Article  CAS  PubMed  Google Scholar 

  7. Pantel K, Speicher MR (2016) The biology of circulating tumor cells. Oncogene 35(10):1216–1224

    Article  CAS  PubMed  Google Scholar 

  8. Arnedos M, Vicier C, Loi S, Lefebvre C, Michiels S, Bonnefoi H, Andre F (2015) Precision medicine for metastatic breast cancer--limitations and solutions. Nat Rev Clin Oncol 12:693–704

    Article  CAS  PubMed  Google Scholar 

  9. Schlange T, Pantel K (2016) Potential of circulating tumor cells as blood-based biomarkers in cancer liquid biopsy. Pharmacogenomics 17:183–186

    Article  CAS  PubMed  Google Scholar 

  10. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Australian Medical Journal 14:146–147

    Google Scholar 

  11. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bednarz-Knoll N, Alix-Panabières C, Pantel K (2012) Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 31:673–687

    Article  CAS  PubMed  Google Scholar 

  14. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  16. Fisher B (2008) Biological research in the evolution of cancer surgery: a personal perspective. Cancer Res 68:10007–10020

    Article  CAS  PubMed  Google Scholar 

  17. Halsted WS (1894) I. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg 20:497–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  CAS  PubMed  Google Scholar 

  19. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895

    Article  CAS  PubMed  Google Scholar 

  20. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn H-J (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oeffinger KC, Fontham ETH, Etzioni R, Herzig A, Michaelson JS, Shih Y-CT, Walter LC, Church TR, Flowers CR, LaMonte SJ et al (2015) Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA 314:1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinberg RA (2008) Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell 14:283–284

    Article  CAS  PubMed  Google Scholar 

  23. Hanrahan EO, Gonzalez-Angulo AM, Giordano SH, Rouzier R, Broglio KR, Hortobagyi GN, Valero V (2007) Overall survival and cause-specific mortality of patients with stage T1a,bN0M0 breast carcinoma. J Clin Oncol 25:4952–4960

    Article  PubMed  Google Scholar 

  24. Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmüller G et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  CAS  Google Scholar 

  25. Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501:365–372

    Article  CAS  PubMed  Google Scholar 

  26. Banys M, Hahn M, Gruber I, Krawczyk N, Wallwiener M, Hartkopf A, Taran F-A, Röhm C, Kurth R, Becker S et al (2014) Detection and clinical relevance of hematogenous tumor cell dissemination in patients with ductal carcinoma in situ. Breast Cancer Res Treat 144:531–538

    Article  CAS  PubMed  Google Scholar 

  27. Sänger N, Effenberger KE, Riethdorf S, Van Haasteren V, Gauwerky J, Wiegratz I, Strebhardt K, Kaufmann M, Pantel K (2011) Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer 129:2522–2526

    Article  PubMed  CAS  Google Scholar 

  28. Banys M, Gruber I, Krawczyk N, Becker S, Kurth R, Wallwiener D, Jakubowska J, Hoffmann J, Rothmund R, Staebler A et al (2012a) Hematogenous and lymphatic tumor cell dissemination may be detected in patients diagnosed with ductal carcinoma in situ of the breast. Breast Cancer Res Treat 131:801–808

    Article  CAS  PubMed  Google Scholar 

  29. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  CAS  PubMed  Google Scholar 

  30. Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, Stathopoulos EN, Stathopoulou A, Lianidou E, Chlouverakis G et al (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 25:5194–5202

    Article  PubMed  Google Scholar 

  31. Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S, Stathopoulos EN, Chlouverakis G, Lianidou E, Kakolyris S et al (2009) Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 27:2177–2184

    Article  CAS  PubMed  Google Scholar 

  32. Ignatiadis M, Rothé F, Chaboteaux C, Durbecq V, Rouas G, Criscitiello C, Metallo J, Kheddoumi N, Singhal SK, Michiels S et al (2011) HER2-positive circulating tumor cells in breast cancer. PLoS One 6:e15624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Podsypanina K, Du Y-CN, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321:1841–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weng D, Penzner JH, Song B, Koido S, Calderwood SK, Gong J (2012) Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Res 14:R18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  36. Comen E, Norton L (2012) Self-seeding in cancer. Recent Results Cancer Res 195:13–23

    Article  PubMed  Google Scholar 

  37. Comen E, Norton L, Massagué J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377

    PubMed  Google Scholar 

  38. Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development Int J Cancer 128:2511–2526

    CAS  PubMed  Google Scholar 

  39. Kim M-Y, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH-F, Norton L, Massagué J (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Ma Q, Liu T, Ke S, Jiang K, Wen Y, Ma B, Zhou Y, Fan Q, Qiu X (2014) Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms. J Cancer Res Clin Oncol 140:329–340

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Ma Q, Liu T, Guan G, Zhang K, Chen J, Jia N, Yan S, Chen G, Liu S et al (2016) Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model. Oncotarget 7:446–458

    PubMed  Google Scholar 

  42. Hartkopf AD, Wallwiener M, Fehm TN, Hahn M, Walter CB, Gruber I, Brucker SY, Taran F-A (2015) Disseminated tumor cells from the bone marrow of patients with nonmetastatic primary breast cancer are predictive of locoregional relapse. Ann Oncol 26:1155–1160

    Article  CAS  PubMed  Google Scholar 

  43. van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barriere G, Fici P, Gallerani G, Fabbri F, Rigaud M (2015) Epithelial Mesenchymal Transition: a double-edged sword. Clin Transl Med 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moustakas A, Heldin C-H (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    Article  CAS  PubMed  Google Scholar 

  48. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  49. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110

    Article  CAS  PubMed  Google Scholar 

  50. Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870

    Article  CAS  PubMed  Google Scholar 

  51. García de Herreros A (2014) Epithelial to mesenchymal transition in tumor cells as consequence of phenotypic instability. Front Cell Dev Biol 2:71

    PubMed  PubMed Central  Google Scholar 

  52. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  53. Radisky ES, Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mathias RA, Gopal SK, Simpson RJ (2013) Contribution of cells undergoing epithelial–mesenchymal transition to the tumour microenvironment. J Proteome 78:545–557

    Article  CAS  Google Scholar 

  55. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–523

    Article  CAS  PubMed  Google Scholar 

  56. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H (2015) Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 5:155

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T, von Ahsen O (2012) Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krawczyk N, Meier-Stiegen F, Banys M, Neubauer H, Ruckhaeberle E, Fehm T (2014) Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. Biomed Res Int 2014:415721

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, Yang D, Deng H, Yang N, Xu J (2015) Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS One 10:e0123976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cierna Z, Mego M, Janega P, Karaba M, Minarik G, Benca J, Sedlácková T, Cingelova S, Gronesova P, Manasova D et al (2014) Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer 14:472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci 107:21677–21682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Molnar B, Ladanyi A, Tanko L, Sréter L, Tulassay Z (2001) Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res 7:4080–4085

    CAS  PubMed  Google Scholar 

  64. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massagué J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  CAS  PubMed  Google Scholar 

  65. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  PubMed  Google Scholar 

  66. Méhes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44:3584–3592

    CAS  PubMed  Google Scholar 

  68. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498

    Article  CAS  PubMed  Google Scholar 

  69. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitchell MJ, King MR (2013a) Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mitchell MJ, King MR (2013b) Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys 15:015008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Allen JE, Krigsfeld G, Patel L, Mayes PA, Dicker DT, Wu GS, El-Deiry WS (2015) Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway. Mol Cancer 14:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, Voigt A, Kloor M, Benner A, Bork U et al (2014) Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 74:1694–1704

    Article  CAS  PubMed  Google Scholar 

  74. Tarin, D., Thompson, E.W., and Newgreen, D.F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65, 5996–6000; discussion 6000–6001

    Google Scholar 

  75. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A et al (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9:016001

    Article  PubMed  PubMed Central  Google Scholar 

  76. Paoletti C, Li Y, Muniz MC, Kidwell KM, Aung K, Thomas DG, Brown ME, Abramson VG, Irvin WJ, Lin NU et al (2015) Significance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, Phase II Trial: TBCRC 019. Clin Cancer Res 21:2771–2779

    Article  CAS  PubMed  Google Scholar 

  77. Hou J-M, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178:989–996

    Article  PubMed  PubMed Central  Google Scholar 

  78. Holen I, Whitworth J, Nutter F, Evans A, Brown HK, Lefley DV, Barbaric I, Jones M, Ottewell PD (2012) Loss of plakoglobin promotes decreased cell-cell contact, increased invasion, and breast cancer cell dissemination in vivo. Breast Cancer Res 14:R86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJC, Greystoke A, Zhou C, Morris K et al (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30:525–532

    Article  PubMed  Google Scholar 

  80. Karachaliou N, Pilotto S, Bria E, Rosell R (2015) Platelets and their role in cancer evolution and immune system. Transl Lung Cancer Res 4:713–720

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Riethdorf S, Pantel K (2008) Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 75:140–148

    Article  PubMed  Google Scholar 

  82. Hadfield G (1954) The dormant cancer cell. Br Med J 2:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Banys M, Hartkopf AD, Krawczyk N, Kaiser T, Meier-Stiegen F, Fehm T, Neubauer H (2012b) Dormancy in breast cancer. Breast Cancer (Dove Med Press) 4:183–191

    CAS  Google Scholar 

  84. Yeh AC, Ramaswamy S (2015) Mechanisms of cancer cell dormancy-another hallmark of cancer? Cancer Res 75:5014–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VHC, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    Article  CAS  PubMed  Google Scholar 

  86. Zhang XH-F, Giuliano M, Trivedi MV, Schiff R, Osborne CK (2013) Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res 19:6389–6397

    Article  CAS  PubMed  Google Scholar 

  87. Rogers MS, Novak K, Zurakowski D, Cryan LM, Blois A, Lifshits E, Bø TH, Oyan AM, Bender ER, Lampa M et al (2014) Spontaneous reversion of the angiogenic phenotype to a nonangiogenic and dormant state in human tumors. Mol Cancer Res 12:754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  89. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitra A, Mishra L, Li S (2015) EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 6:10697–10711

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee B-N, Tin S, De Laurentiis M, Parker CA, Alvarez RH et al (2012) Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther 11:2526–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reuben JM, Lee B-N, Gao H, Cohen EN, Mego M, Giordano A, Wang X, Lodhi A, Krishnamurthy S, Hortobagyi GN et al (2011) Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44+CD24lo cancer stem cell phenotype. Eur J Cancer 47:1527–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T (2012) Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 14:R15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E et al (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130:449–455

    Article  CAS  PubMed  Google Scholar 

  97. Giordano A, Gao H, Cohen EN, Anfossi S, Khoury J, Hess K, Krishnamurthy S, Tin S, Cristofanilli M, Hortobagyi GN et al (2013) Clinical relevance of cancer stem cells in bone marrow of early breast cancer patients. Ann Oncol 24:2515–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alix-Panabieres C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6:479–491

    Article  CAS  PubMed  Google Scholar 

  99. Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  PubMed  CAS  Google Scholar 

  100. Stathopoulos EN, Sanidas E, Kafousi M, Mavroudis D, Askoxylakis J, Bozionelou V, Perraki M, Tsiftsis D, Georgoulias V (2005) Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann Oncol 16:240–246

    Article  CAS  PubMed  Google Scholar 

  101. Gaforio J-J, Serrano M-J, Sanchez-Rovira P, Sirvent A, Delgado-Rodriguez M, Campos M, de la Torre N, Algarra I, Dueñas R, Lozano A (2003) Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer 107:984–990

    Article  CAS  PubMed  Google Scholar 

  102. Xenidis N, Vlachonikolis I, Mavroudis D, Perraki M, Stathopoulou A, Malamos N, Kouroussis C, Kakolyris S, Apostolaki S, Vardakis N et al (2003) Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann Oncol 14:849–855

    Article  CAS  PubMed  Google Scholar 

  103. Giatromanolaki A, Koukourakis MI, Kakolyris S, Mavroudis D, Kouroussis C, Mavroudi C, Perraki M, Sivridis E, Georgoulias V (2004) Assessment of highly angiogenic and disseminated in the peripheral blood disease in breast cancer patients predicts for resistance to adjuvant chemotherapy and early relapse. Int J Cancer 108:620–627

    Article  CAS  PubMed  Google Scholar 

  104. Pierga J-Y, Bonneton C, Vincent-Salomon A, de Cremoux P, Nos C, Blin N, Pouillart P, Thiery J-P, Magdelénat H (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10:1392–1400

    Article  CAS  PubMed  Google Scholar 

  105. Masuda T-A, Kataoka A, Ohno S, Murakami S, Mimori K, Utsunomiya T, Inoue H, Tsutsui S, Kinoshita J, Masuda N et al (2005) Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RT-PCR assay for cytokeratin-7 in breast cancer patients. Int J Oncol 26:721–730

    CAS  PubMed  Google Scholar 

  106. Benoy IH, Elst H, Philips M, Wuyts H, Van Dam P, Scharpé S, Van Marck E, Vermeulen PB, Dirix LY (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94:672–680

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ntoulia M, Stathopoulou A, Ignatiadis M, Malamos N, Mavroudis D, Georgoulias V, Lianidou ES (2006) Detection of Mammaglobin A-mRNA-positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin Biochem 39:879–887

    Article  CAS  PubMed  Google Scholar 

  108. Wiedswang G, Borgen E, Schirmer C, Kåresen R, Kvalheim G, Nesland JM, Naume B (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118:2013–2019

    Article  CAS  PubMed  Google Scholar 

  109. Wong NS, Kahn HJ, Zhang L, Oldfield S, Yang L-Y, Marks A, Trudeau ME (2006) Prognostic significance of circulating tumour cells enumerated after filtration enrichment in early and metastatic breast cancer patients. Breast Cancer Res Treat 99:63–69

    Article  PubMed  Google Scholar 

  110. Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K, Androulakis N, Kouroussis C, Pallis T et al (2006) Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol Off J Am Soc Clin Oncol 24:3756–3762

    Article  CAS  Google Scholar 

  111. Xenidis N, Markos V, Apostolaki S, Perraki M, Pallis A, Sfakiotaki G, Papadatos-Pastos D, Kalmanti L, Kafousi M, Stathopoulos E et al (2007) Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann Oncol 18:1623–1631

    Article  CAS  PubMed  Google Scholar 

  112. Ignatiadis M, Kallergi G, Ntoulia M, Perraki M, Apostolaki S, Kafousi M, Chlouverakis G, Stathopoulos E, Lianidou E, Georgoulias V et al (2008) Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res 14:2593–2600

    Article  CAS  PubMed  Google Scholar 

  113. Tkaczuk KHR, Goloubeva O, Tait NS, Feldman F, Tan M, Lum Z-P, Lesko SA, Van Echo DA, Ts’o POP (2008) The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Res Treat 111:355–364

    Article  PubMed  Google Scholar 

  114. Daskalaki A, Agelaki S, Perraki M, Apostolaki S, Xenidis N, Stathopoulos E, Kontopodis E, Hatzidaki D, Mavroudis D, Georgoulias V (2009) Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br J Cancer 101:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marques AR, Teixeira E, Diamond J, Correia H, Santos S, Neto L, Ribeiro M, Miranda A, Passos-Coelho JL (2009) Detection of human mammaglobin mRNA in serial peripheral blood samples from patients with non-metastatic breast cancer is not predictive of disease recurrence. Breast Cancer Res Treat 114:223–232

    Article  CAS  PubMed  Google Scholar 

  116. Serrano MJ, Sánchez-Rovira P, Delgado-Rodriguez M, Gaforio JJ (2009) Detection of circulating tumor cells in the context of treatment: prognostic value in breast cancer. Cancer Biol Ther 8:671–675

    Article  PubMed  Google Scholar 

  117. Bidard F-C, Mathiot C, Delaloge S, Brain E, Giachetti S, de Cremoux P, Marty M, Pierga J-Y (2010) Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 21:729–733

    Article  PubMed  Google Scholar 

  118. Chen Y, Zou TN, Wu ZP, Zhou YC, Gu YL, Liu X, Jin CG, Wang XC (2010) Detection of cytokeratin 19, human mammaglobin, and carcinoembryonic antigen-positive circulating tumor cells by three-marker reverse transcription-PCR assay and its relation to clinical outcome in early breast cancer. Int J Biol Markers 25:59–68

    PubMed  Google Scholar 

  119. Molloy TJ, Bosma AJ, Baumbusch LO, Synnestvedt M, Borgen E, Russnes HG, Schlichting E, van ‘t Veer LJ, Naume B (2011a) The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients. Breast Cancer Res 13:R61

    Article  PubMed  PubMed Central  Google Scholar 

  120. Molloy TJ, Devriese LA, Helgason HH, Bosma AJ, Hauptmann M, Voest EE, Schellens JHM, van ‘t Veer LJ (2011b) A multimarker QPCR-based platform for the detection of circulating tumour cells in patients with early-stage breast cancer. Br J Cancer 104:1913–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, Bedrosian I, Kuerer HM, Krishnamurthy S (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695

    Article  PubMed  Google Scholar 

  122. Aktas B, Bankfalvi A, Heubner M, Kimmig R, Kasimir-Bauer S (2013) Evaluation and correlation of risk recurrence in early breast cancer assessed by Oncotype DX(®), clinicopathological markers and tumor cell dissemination in the blood and bone marrow. Mol Clin Oncol 1:1049–1054

    PubMed  PubMed Central  Google Scholar 

  123. Rack B, Schindlbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, Friedl TWP, Lorenz R, Tesch H, Fasching PA et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106

    Google Scholar 

  124. Tryfonidis K, Kafousi M, Perraki M, Apostolaki S, Agelaki S, Georgoulias V, Stathopoulos E, Mavroudis D (2014) Detection of circulating cytokeratin-19 mRNA-positive cells in the blood and the mitotic index of the primary tumor have independent prognostic value in early breast cancer. Clin Breast Cancer 14:442–450

    Article  CAS  PubMed  Google Scholar 

  125. Hartkopf AD, Wallwiener M, Hahn M, Fehm TN, Brucker SY, Taran F-A (2016) Simultaneous detection of disseminated and circulating tumor cells in primary breast cancer patients. Cancer Res Treat 48:115–124

    Article  PubMed  Google Scholar 

  126. Janni WJ, Rack B, Terstappen LWMM, Pierga J-Y, Taran F-A, Fehm T, Hall C, de Groot MR, Bidard F-C, Friedl TWP et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593

    Article  CAS  PubMed  Google Scholar 

  127. Kasimir-Bauer S, Bittner A-K, König L, Reiter K, Keller T, Kimmig R, Hoffmann O (2016a) Does primary neoadjuvant systemic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells before and after therapy. Breast Cancer Res 18:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kasimir-Bauer S, Reiter K, Aktas B, Bittner A-K, Weber S, Keller T, Kimmig R, Hoffmann O (2016b) Different prognostic value of circulating and disseminated tumor cells in primary breast cancer: influence of bisphosphonate intake? Sci Rep 6:26355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, Liu J, Pantel K (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 18:5701–5710

    Article  PubMed  Google Scholar 

  130. Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, Rossille D, Maudelonde T, Fest T, Alix-Panabières C (2015) Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 9:1773–1782

    Article  CAS  PubMed  Google Scholar 

  131. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Schneck H, Blassl C, Meier-Stiegen F, Neves RP, Janni W, Fehm T, Neubauer H (2013) Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol 7:976–986

    Article  CAS  PubMed  Google Scholar 

  133. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  134. Apostolaki S, Perraki M, Pallis A, Bozionelou V, Agelaki S, Kanellou P, Kotsakis A, Politaki E, Kalbakis K, Kalykaki A et al (2007) Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann Oncol 18:851–858

    Article  CAS  PubMed  Google Scholar 

  135. Apostolaki S, Perraki M, Kallergi G, Kafousi M, Papadopoulos S, Kotsakis A, Pallis A, Xenidis N, Kalmanti L, Kalbakis K et al (2009) Detection of occult HER2 mRNA-positive tumor cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic relevance. Breast Cancer Res Treat 117:525–534

    Article  PubMed  Google Scholar 

  136. Fehm T, Becker S, Duerr-Stoerzer S, Sotlar K, Mueller V, Wallwiener D, Lane N, Solomayer E, Uhr J (2007) Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res 9:R74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Flores LM, Kindelberger DW, Ligon AH, Capelletti M, Fiorentino M, Loda M, Cibas ES, Jänne PA, Krop IE (2010) Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br J Cancer 102:1495–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kallergi G, Agelaki S, Papadaki MA, Nasias D, Matikas A, Mavroudis D, Georgoulias V (2015) Expression of truncated human epidermal growth factor receptor 2 on circulating tumor cells of breast cancer patients. Breast Cancer Res 17:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Krishnamurthy S, Bischoff F, Ann Mayer J, Wong K, Pham T, Kuerer H, Lodhi A, Bhattacharyya A, Hall C, Lucci A (2013) Discordance in HER2 gene amplification in circulating and disseminated tumor cells in patients with operable breast cancer. Cancer Med 2:226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lang JE, Mosalpuria K, Cristofanilli M, Krishnamurthy S, Reuben J, Singh B, Bedrosian I, Meric-Bernstam F, Lucci A (2009) HER2 status predicts the presence of circulating tumor cells in patients with operable breast cancer. Breast Cancer Res Treat 113:501–507

    Article  CAS  PubMed  Google Scholar 

  141. Pestrin M, Bessi S, Galardi F, Truglia M, Biggeri A, Biagioni C, Cappadona S, Biganzoli L, Giannini A, Di Leo A (2009) Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res Treat 118:523–530

    Article  CAS  PubMed  Google Scholar 

  142. Riethdorf S, Müller V, Zhang L, Rau T, Loibl S, Komor M, Roller M, Huober J, Fehm T, Schrader I et al (2010) Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 16:2634–2645

    Article  CAS  PubMed  Google Scholar 

  143. Wallwiener M, Hartkopf AD, Riethdorf S, Nees J, Sprick MR, Schönfisch B, Taran F-A, Heil J, Sohn C, Pantel K et al (2015) The impact of HER2 phenotype of circulating tumor cells in metastatic breast cancer: a retrospective study in 107 patients. BMC Cancer 15:403

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wülfing P, Borchard J, Buerger H, Heidl S, Zänker KS, Kiesel L, Brandt B (2006) HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin Cancer Res 12:1715–1720

    Article  PubMed  Google Scholar 

  145. Bidard F-C, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabières C, Janni W, Messina C, Paoletti C, Müller V, Hayes DF et al (2013) Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 32:179–188

    Article  PubMed  Google Scholar 

  146. Bozionellou V, Mavroudis D, Perraki M, Papadopoulos S, Apostolaki S, Stathopoulos E, Stathopoulou A, Lianidou E, Georgoulias V (2004) Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 10:8185–8194

    Article  CAS  PubMed  Google Scholar 

  147. Georgoulias V, Bozionelou V, Agelaki S, Perraki M, Apostolaki S, Kallergi G, Kalbakis K, Xyrafas A, Mavroudis D (2012) Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann Oncol 23:1744–1750

    Article  CAS  PubMed  Google Scholar 

  148. Ignatiadis M, Rack B, Rothé F, Riethdorf S, Decraene C, Bonnefoi H, Dittrich C, Messina C, Beauvois M, Trapp E et al (2016) Liquid biopsy-based clinical research in early breast cancer: the EORTC 90091-10093 Treat CTC trial. Eur J Cancer 63:97–104

    Article  PubMed  Google Scholar 

  149. Naume B, Synnestvedt M, Falk RS, Wiedswang G, Weyde K, Risberg T, Kersten C, Mjaaland I, Vindi L, Sommer HH et al (2014) Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J Clin Oncol 32:3848–3857

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Ignatiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pondé, N.F., Ignatiadis, M. (2017). Circulating Tumour Cells in Primary Disease: The Seed for Metastasis. In: Cristofanilli, M. (eds) Liquid Biopsies in Solid Tumors. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50956-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50956-3_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50955-6

  • Online ISBN: 978-3-319-50956-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics