Whole-Body Coordination Skill for Dynamic Balancing on a Slackline

  • Kentaro KodamaEmail author
  • Yusuke Kikuchi
  • Hideo Yamagiwa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10091)


The purpose of the present study is to reveal the fundamental skills for slacklining. A slackline is a flat belt tightly spanned between two anchor points. Because it bounces and swings in all directions, maintaining balance on it is difficult. In the practical field of slackline training, instructors share their skills based on personal experience. In a basic slackline course, they begin by teaching a fundamental skill, such as single-leg standing on a slackline, by explaining how they do it. However, such first-person perspectives on slacklining skills have not been scientifically investigated. According to instructors’ knowledge based on personal experience, we hypothesize the skills for single-leg standing on the slackline. The present study examines current hypotheses by comparing performances at different skill level (i.e., experienced vs. novice). This article introduces our pilot study, including current hypotheses and data from preliminary experiment, and discusses them.


Slackline Balance sport Dynamic stability Embodiment Synergy 


  1. 1.
    Granacher, U., Iten, N., Roth, R., Gollhofer, A.: Slackline training for balance and strength promotion. Int. J. Sports Med. 31(10), 717–723 (2010)CrossRefGoogle Scholar
  2. 2.
    Keller, M., Pfusterschmied, J., Buchecker, M., Müller, E., Taube, W.: Improved postural control after slackline training is accompanied by reduced H-reflexes. Scand. J. Med. Sci. Sports 22(4), 471–477 (2012)CrossRefGoogle Scholar
  3. 3.
    Pfusterschmied, J., Buchecker, M., Keller, M., Wagner, H., Taube, W., Müller, E.: Supervised slackline training improves postural stability. Eur. J. Sport Sci. 13, 49–57 (2011)CrossRefGoogle Scholar
  4. 4.
    Huber, P., Kleindl, R.: A case study on balance recovery in slacklining. In: ISBS-Conference Proceedings Archive, 1990, pp. 1–4 (2010)Google Scholar
  5. 5.
    Pfusterschmied, J., Stöggl, T., Buchecker, M., Lindinger, S., Wagner, H., Müller, E.: Effects of 4-week slackline training on lower limb joint motion and muscle activation. J. Sci. Med. Sport 16(6), 562–566 (2013)CrossRefGoogle Scholar
  6. 6.
    Balasubramaniam, R., Wing, A.M.: The dynamics of standing balance. Trends Cogn. Sci. 6(12), 531–536 (2002)CrossRefGoogle Scholar
  7. 7.
    Delignières, D., Torre, K., Bernard, P.L.: Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control. PLoS Comput. Biol. 7(2), e1001089 (2011)CrossRefGoogle Scholar
  8. 8.
    Riley, M.A., Turvey, M.T.: Variability of determinism in motor behavior. J. Mot. Behav. 34(2), 99–125 (2002)CrossRefGoogle Scholar
  9. 9.
    Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press Ltd., Oxford (1967)Google Scholar
  10. 10.
    Turvey, M.T.: Coordination. Am. Psychol. 45(8), 938–953 (1990)CrossRefGoogle Scholar
  11. 11.
    Latash, M.L.: The Bernstein problem: how does the central nervous system make its choices. In: Latash, M.L., Turvey, M.T. (eds.) Dexterity and Its Development. Psychology Press, London (1996)Google Scholar
  12. 12.
    Bernstein, N.A.: Dexterity and Its Development. Psychology Press, London (1996)Google Scholar
  13. 13.
    Haken, H.: Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Springer, Heidelberg (1978)zbMATHGoogle Scholar
  14. 14.
    Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York (1977)zbMATHGoogle Scholar
  15. 15.
    Kelso, J.A.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT Press, Cambridge (1995)Google Scholar
  16. 16.
    Kugler, P.N., Turvey, M.T.: Information, Natural Law, and the Self-assembly of Rhythmic Movement. L. Erlbaum Associates, New Jersey (1987)Google Scholar
  17. 17.
    Newell, K.M.: Constraints on the development of coordination. In: Wade, M.G., Whiting, H.T.A. (eds.) Motor Development in Children: Aspects of Coordination and Control. Springer, Heidelberg (1986)Google Scholar
  18. 18.
    Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cognition and Action. The MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Davids, K., Button, C., Bennett, S.: Dynamics of Skill Acquisition: A Constraints-led Approach. Human Kinetics, Champaign (2008)Google Scholar
  20. 20.
    Tognoli, E., Lagarde, J., DeGuzman, G.C., Kelso, J.A.S.: The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. U.S.A. 104(19), 8190–8195 (2007)CrossRefGoogle Scholar
  21. 21.
    Riley, M.A., Richardson, M.J., Shockley, K.D., Ramenzoni, V.C.: Interpersonal synergies. Front. Psychol. 2, 1–7 (2011)CrossRefGoogle Scholar
  22. 22.
    Schmidt, R.C., Fitzpatrick, P., Caron, R., Mergeche, J.: Understanding social motor coordination. Hum. Mov. Sci. 30(5), 834–845 (2011)CrossRefGoogle Scholar
  23. 23.
    Haken, H., Kelso, J.A.S., Bunz, H.: A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51(5), 347–356 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Holden, J.G., Riley, M.A., Gao, J., Torre, K. (Eds.): Fractal Analyses: Statistical and Methodological Innovations and Best Practices (2013)Google Scholar
  25. 25.
    Van Orden, G.C., Riley, M.A. (eds.): Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. National Science Foundation, Arlington (2005)Google Scholar
  26. 26.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)zbMATHGoogle Scholar
  27. 27.
    Brooks, R.A.: Intelligent robot theory of Brooks - why the MIT robot or continue to move forward? Omusha (2006)Google Scholar
  28. 28.
    Scheier, C., Pfeifer, R.: Understanding Intelligence. MIT Press, Cambridge (2001)Google Scholar
  29. 29.
    Gibson, J.J.: The Senses Considered as Perceptual Systems. Praeger, New York (1966)Google Scholar
  30. 30.
    Gibson, J.J.: The Ecological Approach to Visual Perception: Classic Edition, vol. 20. Psychology Press, London (1979)Google Scholar
  31. 31.
    Turvey, M.T., Fonseca, S.T.: The medium of haptic perception: a tensegrity hypothesis. J. Mot. Behav. 46(3), 143–187 (2014)CrossRefGoogle Scholar
  32. 32.
    Turvey, M.T.: Action and perception at the level of synergies. Hum. Mov. Sci. 26(4), 657–697 (2007)CrossRefGoogle Scholar
  33. 33.
    Carello, C., Silva, P.L., Kinsella-Shaw, J., Turvey, M.T.: Muscle-based perception: theory, research and implications for rehabilitation. Revista Brasileira de Fisioterapia 12(5), 339–350 (2008)Google Scholar
  34. 34.
    Carello, C., Turvey, M.T.: Physics and psychology of the muscle sense. Curr. Dir. Psychol. Sci. 13(1), 25–28 (2004)CrossRefGoogle Scholar
  35. 35.
    Turvey, M.T., Carello, C.: Obtaining information by dynamic (effortful) touching. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1581), 3123–3132 (2011)CrossRefGoogle Scholar
  36. 36.
    Latash, M.L.: Synergy. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  37. 37.
    Zbilut, J.P., Giuliani, A., Webber, C.L.: Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. A 246(1–2), 122–128 (1998)CrossRefGoogle Scholar
  38. 38.
    Coco, M.I., Dale, R.: Cross-recurrence quantification analysis of categorical and continuous time series: an R package. Front. Psychol. 5, 510 (2014)CrossRefGoogle Scholar
  39. 39.
    Pellecchia, G.L., Shockley, K.D., Turvey, M.T.: Concurrent cognitive task modulates coordination dynamics. Cogn. Sci. 29(4), 531–557 (2005)CrossRefGoogle Scholar
  40. 40.
    Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685–1689 (1994)CrossRefGoogle Scholar
  41. 41.
    Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, N.Y.) 5(1), 82–87 (1995)CrossRefGoogle Scholar
  42. 42.
    Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23(1), R1–R38 (2002)CrossRefGoogle Scholar
  43. 43.
    Delignières, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., Ninot, G.: Fractal analyses for “short” time series: a re-assessment of classical methods. J. Math. Psychol. 50(6), 525–544 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hausdorff, J.M.: Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos Interdisc. J. Nonlinear Sci. 19(2), 026113 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Arzamarski, R., Isenhower, R.W., Kay, B.A., Turvey, M.T., Michaels, C.F.: Effects of intention and learning on attention to information in dynamic touch. Atten. Percept. Psychophys. 72(3), 721–735 (2010)CrossRefGoogle Scholar
  46. 46.
    Shockley, K.D.: Cross recurrence quantification of interpersonal postural activity. In: Riley, M., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 142–177. National Science Foundation, Arlington (2005)Google Scholar
  47. 47.
    Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)CrossRefGoogle Scholar
  48. 48.
    Webber, C.L., Zbilut, J.P.: Recurrence quantification analysis of nonlinear dynamical systems. In: Riley, M., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 26–94. National Science Foundation, Arlington (2005)Google Scholar
  49. 49.
    Marwan, N.: Cross recurrence plot toolbox (2013).
  50. 50.
    Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V.V., Mansvelder, H.D., Linkenkaer-Hansen, K.: Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3, 1–13 (2012)CrossRefGoogle Scholar
  51. 51.
    Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. 99(Supplement 1), 2466–2472 (2002)CrossRefGoogle Scholar
  52. 52.
    Van Orden, G.C., Holden, J.G., Turvey, M.T.: Human cognition and 1/f scaling. J. Exp. Psychol. Gen. 134(1), 117–123 (2005)CrossRefGoogle Scholar
  53. 53.
    Lipsitz, L.A., Goldberger, A.L.: Loss of “complexity” and aging. JAMA 267(13), 1806 (1992)CrossRefGoogle Scholar
  54. 54.
    Dixon, J.A., Stephen, D.G., Boncoddo, R., Anastas, J.R.: The self-organization of cognitive structure. Psychol. Learn. Motiv. 52, 343–384 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kentaro Kodama
    • 1
    Email author
  • Yusuke Kikuchi
    • 2
  • Hideo Yamagiwa
    • 3
  1. 1.Kanagawa UniversityKanagawa-ku, Yokohama-shiJapan
  2. 2.Future University HakodateHakodate-shiJapan
  3. 3.Tokyo Metropolitan Tobu Medical CenterTokyoJapan

Personalised recommendations