Advertisement

Argumentation Support Tool with Reliability-Based Argumentation Framework

  • Kei NishinaEmail author
  • Yuki Katsura
  • Shogo Okada
  • Katsumi Nitta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10091)

Abstract

In legal debates, it is a matter of importance whether one’s own argument is accepted or not. For this, we propose evaluation method for calculating the acceptability of arguments, and a tool developed based on the measures. This method is called reliability-based argumentation framework (RAFs), extended from argumentation framework, seeking for multivalued dialectical validities of arguments reliable to some extent. The modular reliability-based argumentation framework (MRAF) based on RAFs is able to integrate the RAF semantics in every module. This leads to an over-all valuation of the acceptability of argumentations including several local arguments. The argumentation-support tool can represent the utterance logs of those who join an debate, the argumentation diagram its users made, and the argumentation framework converted from this, contributing to the intuitive comprehension of the logical structures of arguments and their acceptability. This tool also enables represented argumentation framework to be converted into modular structures of local AFs, leading to an overall valuation of the acceptability of arguments.

Keywords

Argumentation theory Argumentation framework Argumentation support tool Logical analysis of real complicated discussions Reliability of argument Modular structure 

References

  1. 1.
    Reed, C., Rowe, G.: Araucaria: software for argument analysis, diagramming and representation. Int. J. Artif. Intell. Tools 13(04), 961–979 (2004)CrossRefGoogle Scholar
  2. 2.
    Stephen, T.: The Uses of Argument. Cambridge University Press, Cambridge (1958)Google Scholar
  3. 3.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atkinson, K., Bench-Capon, T., Dunne, P.E.: Uniform argumentation frameworks. In: Computational Models of Argument: Proceedings of COMMA 2012, vol. 245, p. 165 (2012)Google Scholar
  5. 5.
    Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Torre, L., Villata, S.: An aspic-based legal argumentation framework for deontic reasoning. In: Computational Models of Argument: Proceedings of COMMA 2014, pp. 266–421 (2014)Google Scholar
  7. 7.
    Muntjewerff, A.J., Breuker, J.A.: Evaluating PROSA, a system to train solving legal cases. In: Artificial Intelligence in Education: Ai-Ed in the Wired and Wireless Future, pp. 278–285 (2001)Google Scholar
  8. 8.
    Aleven, V.: An intelligent learning environment for case-based argumentation. Technol. Instr. Cognit. Learn. 4(2), 191–241 (2006)Google Scholar
  9. 9.
    Pinkwart, N., Aleven, V., Ashley, K., Lynch, C.: Evaluating legal argument instruction with graphical representations using LARGO. Front. Artif. Intell. Appl. 158, 101 (2007)Google Scholar
  10. 10.
    Pinkwart, N., Lynch, C., Ashley, K., Aleven, V.: Re-evaluating LARGO in the classroom: are diagrams better than text for teaching argumentation skills? In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 90–100. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69132-7_14 CrossRefGoogle Scholar
  11. 11.
    Ravenscroft, A., Pilkington, R.M.: Investigation by design: developing dialogue models to support reasoning and conceptual change. Int. J. Artif. Intell. Educ. 11(1), 273–298 (2000)Google Scholar
  12. 12.
    Dung, P.M., Thang, P.M., Hung, N.D.: Modular argumentation for modelling legal doctrines of performance relief. Argument Comput. 1(1), 47–69 (2010)CrossRefGoogle Scholar
  13. 13.
    Brewka, G., Eiter, T.: Argumentation context systems: a framework for abstract group argumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 44–57. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04238-6_7 CrossRefGoogle Scholar
  14. 14.
    Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9), 901–934 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumentation. In: Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence, pp. 1–7. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  16. 16.
    Bench-Capon, T.J.: Persuasion in practical argument using value-based argumentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tang, Y., Cai, K., McBurney, P., Sklar, E., Parsons, S.: Using argumentation to reason about trust and belief. J. Logic Comput., exr038 (2011)Google Scholar
  18. 18.
    Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29184-5_1 CrossRefGoogle Scholar
  19. 19.
    Pazienza, A., Esposito, F., Ferilli, S.: An authority degree-based evaluation strategy for abstract argumentation frameworks (2013)Google Scholar
  20. 20.
    Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006). doi: 10.1007/11853886_11 CrossRefGoogle Scholar
  21. 21.
    Katsura, Y., Okada, S., Nitta, K.: Dynamic argumentaion support tool using argument diagram. Ann. Conf. J. Soc. Artif. Intell. 29, 1–4 (2015). (in Japanese)Google Scholar
  22. 22.
    Prakken, H.: An overview of formal models of argumentation and their application in philosophy. Stud. Logic 4(1), 65–86 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kei Nishina
    • 1
    Email author
  • Yuki Katsura
    • 1
  • Shogo Okada
    • 1
  • Katsumi Nitta
    • 1
  1. 1.Department of Computational Intelligence and Systems ScienceTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations