Advertisement

Combining Input/Output Logic and Reification for Representing Real-World Obligations

  • Livio RobaldoEmail author
  • Llio Humphreys
  • Xin Sun
  • Loredana Cupi
  • Cristiana Santos
  • Robert Muthuri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10091)

Abstract

In this paper, we propose a new approach to formalize real-world obligations that may be found in existing legislation. Specifically, we propose to formalize real-world obligations by combining insights of two logical frameworks: Input/Output logic, belonging to the literature in deontic logic and normative reasoning, and the Reification-based approach of Jerry R. Hobbs, belonging to the literature in Natural Language Semantics. The present paper represents the first step of the ProLeMAS project, whose main goal is the one of filling the gap between the current logical formalizations of legal text, mostly propositional, and the richness of Natural Language Semantics.

Keywords

First Order Logic Normative Reasoning Logical Framework Deontic Logic Legal Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Araszkiewicz, M., Pleszka, K. (eds.): Logic in the Theory and Practice of Lawmaking. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Bach, E.: On time, tense, and aspect: An essay in english metaphysics. In: Cole, P. (ed.) Radical Pragmatics, pp. 63–81. Academic Press, New York (1981)Google Scholar
  3. 3.
    Bartolini, C., Muthuri, R.: Reconciling data protection rights and obligations: An ontology of the forthcoming EU regulation. In: Proceedings of the Workshop on Language and Semantic Technology for Legal Domain (LST4LD) (2015)Google Scholar
  4. 4.
    Boella, G., Di Caro, L., Ruggeri, A., Robaldo, L.: Learning from syntax generalizations for automatic semantic annotation. J. Intell. Inf. Syst. 43(2), 231–246 (2014)CrossRefGoogle Scholar
  5. 5.
    Copestake, A., Flickinger, D., Sag, I.A.: Minimal recursion semantics: An introduction. J. Res. Lang. Comput. 3(2), 281–332 (2005)CrossRefGoogle Scholar
  6. 6.
    Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic of Decision and Action. University of Pittsburgh Press (1967)Google Scholar
  7. 7.
    Evans, D., Eyers, D.: Deontic logic for modelling data flow and use compliance. In: Proceedings of the 6th International Workshop on Middleware for Pervasive and Ad-hoc Computing, pp. 19–24. ACM, New York (2008)Google Scholar
  8. 8.
    Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus. In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models, pp. 335–366. IGI Global (2009)Google Scholar
  9. 9.
    Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.): Handbook of Deontic Logic and Normative Systems. College Publications, London (2013)zbMATHGoogle Scholar
  10. 10.
    Galton, A.: Operators vs. arguments: The ins and outs of reification. Synthese 150(3), 415–441 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and weak permissions in defeasible logic. J. Philos. Logic 42(6), 799–829 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hashmi, M., Governatori, G., Wynn, M.T.: Modeling obligations with event-calculus. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 296–310. Springer, Cham (2014). doi: 10.1007/978-3-319-09870-8_22 CrossRefGoogle Scholar
  13. 13.
    Hobbs, J.R.: Monotone decreasing quantifiers in a scope-free logical form. In: Semantic Ambiguity and Underspecification, pp. 55–76 (1995)Google Scholar
  14. 14.
    Hobbs, J.R.: The logical notation: Ontological promiscuity. In: Discourse and Inference (1998). Chapter 2, http://www.isi.edu/~hobbs/disinf-tc.html
  15. 15.
    Kamp, H., Reyle, U.: From Discourse to Logic: An Introduction to Modeltheoretic Semantics, Formal Logic and Discourse Representation Theory. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  16. 16.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefzbMATHGoogle Scholar
  17. 17.
    Makinson, D., van der Torre, L.: Permission from an input/output perspective. J. Philos. Logic 32(4), 391–416 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Makinson, D., van der Torre, L.: What is input/output logic? In: Lwe, B., Malzkom, W., Rsch, T. (eds.) Foundations of the Formal Sciences II. Trends in Logic, vol. 17, pp. 163–174. Springer, Netherlands (2003)CrossRefGoogle Scholar
  19. 19.
    Makinson, D., van der Torre, L.: Input/output logics. J. Philos. Logic 29(4), 383–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    McCarty, L.T.: A language for legal discourse I. basic features. In: Proceedings of the 2nd International Conference on Artificial Intelligence and Law (ICAIL 1989). ACM Press (1989)Google Scholar
  21. 21.
    McCarty, L.T.: Deep semantic interpretations of legal texts. In: 2007 Proceedings of the Eleventh International Conference on Artificial Intelligence and Law, 4–8 June 2007, Stanford Law School, Stanford, California, USA, pp. 217–224 (2007)Google Scholar
  22. 22.
    Miller, R., Shanahan, M.: The event calculus in classical logic alternative axiomatizations. Electron. Trans. Artif. Intell. 16(4), 77–105 (1999)Google Scholar
  23. 23.
    Parent, X., van der Torre, L.: Input/output logic. In: Horty, J., Gabbay, D., Parent, X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative Systems. College Publications, London (2013)Google Scholar
  24. 24.
    Paschke, A., Bichler, M.: SLA representation, management and enforcement. In: 2005 IEEE International Conference on e-Technology, e-Commerce, and e-Services (EEE 2005), 29 March–1 April 2005, Hong Kong, China, pp. 158–163 (2005)Google Scholar
  25. 25.
    Robaldo, L.: Interpretation and inference with maximal referential terms. J. Comput. Syst. Sci. 76(5), 373–388 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Robaldo, L.: Distributivity, collectivity, and cumulativity in terms of (in)dependence and maximality. J. Logic Lang. Inf. 20(2), 233–271 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Robaldo, L.: Conservativity: a necessary property for the maximization of witness sets. Logic J. IGPL 21(5), 853–878 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robaldo, L., Miltsakaki, E.: Corpus-driven semantics of concession: Where do expectations come from. Dialogue Discourse 5(1), 1–36 (2014)Google Scholar
  29. 29.
    Robaldo, L., Szymanik, J., Meijering, B.: On the identification of quantifiers’ witness sets a study of multi-quantifier sentences. J. Logic Lang. Inf. 23(1), 53–81 (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The british nationality act as a logic program. Commun. ACM 29(5), 370–386 (1986)CrossRefGoogle Scholar
  31. 31.
    Sun, X.: How to build input/output logic. In: 15th International Workshop on Computational Logic in Multi-Agent Systems, pp. 123–137 (2014)Google Scholar
  32. 32.
    Sun, X., Ambrossio, D.A.: On the complexity of input/output logic. In: Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 429–434. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48561-3_38 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Livio Robaldo
    • 1
    Email author
  • Llio Humphreys
    • 1
  • Xin Sun
    • 1
  • Loredana Cupi
    • 2
  • Cristiana Santos
    • 3
  • Robert Muthuri
    • 2
  1. 1.University of LuxembourgLuxembourg CityLuxembourg
  2. 2.University of TurinTurinItaly
  3. 3.University of BarcelonaBarcelonaSpain

Personalised recommendations