Arrington, R., Langley, C., Bogaerts, S.: Using domain knowledge to improve monte-carlo tree search performance in parameterized poker squares. In: Proceedings of the 30th National Conference on Artificial Intelligence (AAAI 2016), pp. 4065–4070. AAAI Press, Menlo Park (2016)
Google Scholar
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). http://dx.doi.org/10.1023/A:1013689704352
CrossRef
MATH
Google Scholar
Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–49 (2012). http://www.cameronius.com/cv/mcts-survey-master.pdf
Google Scholar
Castro-Wunsch, K., Maga, W., Anton, C.: Beemo, a Monte Carlo simulation agent for playing parameterized poker squares. In: Proceedings of the 30th National Conference on Artificial Intelligence (AAAI 2016), pp. 4071–4074. AAAI Press, Menlo Park (2016)
Google Scholar
Furtak, T., Buro, M.: Recursive Monte Carlo search for imperfect information games. In: 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 11–13 August 2013, pp. 1–8 (2013). http://dx.doi.org/10.1109/CIG.2013.6633646
Kocsis, L., Szepesvári, C., Willemson, J.: Improved monte-carlo search. Univ. Tartu, Estonia, Technical report 1 (2006)
Google Scholar
Morehead, A.H., Mott-Smith, G.: The Complete Book of Solitaire & Patience Games, 1st edn. Grosset & Dunlap, New York (1949)
Google Scholar
Neller, T.W., Messinger, C.M., Zuozhi, Y.: Learning and using hand abstraction values for parameterized poker squares. In: Proceedings of the 30th National Conference on Artificial Intelligence (AAAI 2016), pp. 4095–4100. AAAI Press, Menlo Park (2016)
Google Scholar
Parlett, D.: The Penguin Book of Card Games. Penguin Books, updated edn. (2008)
Google Scholar