Skip to main content

Multimodal Function Optimization Using an Improved Bat Algorithm in Noise-Free and Noisy Environments

  • Chapter
  • First Online:
Nature-Inspired Computing and Optimization

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 10))

  • 1995 Accesses

Abstract

Modern optimization problems in economics, medicine, and engineering are becoming more complicated and have a convoluted search space with multiple minima. These problems are multimodal with objective functions exhibiting multiple peaks, valleys, and hyperplanes of varying heights. Furthermore, they are nonlinear, non-smooth, non-quadratic, and can have multiple satisfactory solutions. In order to select a best solution among several possible solutions that can meet the problem objectives, it is desirable to find many such solutions. For these problems, the gradient information is either not available or not computable within reasonable time. Therefore, solving such problems is a challenging task. Recent years have seen a plethora of activities to solve such multimodal problems using non-traditional methods. These methods are nature inspired and are becoming popular due to their general applicability and effective search strategies. In this chapter, we assess the ability of an improved bat algorithm (IBA) to solve multimodal problems in noise-free and additive white Gaussian noise (AWGN) environments. Numerical results are presented to show that the IBA can successfully locate multiple solutions in both noise-free and AWGN environments with a relatively high degree of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold DV (2001) Local performance of evolution strategies in the presence of noise. PhD thesis, University of Dortmund, Germany

    Google Scholar 

  2. Beasley D, Bull DR, Martin RR (1993) A sequential Niche technique for multimodal function optimization. Evol Comput 1(2):101–125

    Article  Google Scholar 

  3. Brits R, Engelbrecht AP, van den Bergh F (2007) Locating multiple optima using particle swarm optimization. Appl Math Comput 189(12):1859–1883

    MathSciNet  MATH  Google Scholar 

  4. Brown C, Liebovitch LS, Glendon R (2007) Lévy flights in Dobe Ju/Hoansi foraging patterns. Hum Ecol 35(1):129–138

    Article  Google Scholar 

  5. De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive system. PhD thesis, University of Michigan, USA

    Google Scholar 

  6. Elster C, Neumaier A (1997) A method of trust region type for minimizing noisy functions. Computing 58(1):31–46

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher R (1987) Practical methods of optimization, 1st edn. Wiley, Chichester

    MATH  Google Scholar 

  8. Fortune SJ, Gay DM, Kernighan BW, Landron O, Valenzulea RA, Wright MH (1995) WISE design of indoor wireless systems. IEEE Comput Sci Eng 2(1):58–68

    Article  Google Scholar 

  9. Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  10. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of international conference on genetic algorithms and their application, USA, pp 41–49

    Google Scholar 

  11. Harik GR (1995) Finding multimodal solutions using using restricted tournament selection. In: Proceedings of international conference on genetic algorithms and their application, USA, pp 24–31

    Google Scholar 

  12. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

  13. Iwamatsu M (2006) Multi-species particle swarm optimizer for multimodal function optimization. IEICE Trans Inf Syst (English Edition) E89-D(3):1181–1187

    Google Scholar 

  14. Iwamatsu M (2006) locating all the global minima using multi-species particle swarm optimizer: the inertia weight and the constriction factor variants. In: Proceedings of IEEE congress on evolutionary computation, Canada, pp 816–822

    Google Scholar 

  15. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150–194

    Google Scholar 

  16. Jamil M, Zepernick HJ, Yang XS (2015) Synthesizing cross-ambiguity function using improved bat algorithm (Ed Xin-She Yang). Springer, Heidelberg, pp 179–202

    Google Scholar 

  17. Kelley CT (1995) Iterative methods for optimization. SIAM

    Google Scholar 

  18. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Australia, pp 1942–1948

    Google Scholar 

  19. Lee C-Y, Yao X (2004) Evolutionary programming using mutations based on Lévy probability distribution. IEEE Trans Evol Comput 8(1):1–13

    Article  Google Scholar 

  20. Li J-P, Balaz ME, Parks GT (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207–234

    Article  Google Scholar 

  21. Madsen K, Žilinskas J Testing branch-and-bound methods for global optimization. http://www2.imm.dtu.dk/documents/ftp/tr00/tr05_00.pdf

  22. Mahfoud SW (1995) Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, USA

    Google Scholar 

  23. Mishra S Some new test functions for global optimization and performance of repulsive particle swarm method. http://mpra.ub.uni-muenchen.de/2718

  24. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  MATH  Google Scholar 

  25. Parsopoulos K, Plagianakos V, Magoulas G, Vrahatis M (2001) Objective function “Stretching” to alleviate convergence to local minima. Nonlinear Anal 47(5):3419–3424

    Article  MathSciNet  MATH  Google Scholar 

  26. Parsopoulos KE, Vrahatis MN (2001) Modification of the particle swarm optimizer for locating all the global minima. In: Kurova V et al (eds) Artificial neural networks and genetic algorithms. Springer, Berlin, pp 324–327

    Google Scholar 

  27. Parsopoulos K, Vrahatis M (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2–3):235–306

    Article  MathSciNet  MATH  Google Scholar 

  28. Parsopolos K, Vrahatis M (2004) On the compuation of all minima through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224

    Article  Google Scholar 

  29. Pavlyukevich I (2007) Non-local search and simulated annealing Lévy flights. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  30. Pavlyukevich I (2007) Cooling down Lévy flights. J Phys A: Math Theor 40(41):12299–12313

    Article  MathSciNet  MATH  Google Scholar 

  31. Petrowski A (1996) A clearing procedure as a Niching method for genetic algorithms. In: IEEE international conference on evolutionary computation, Japan, pp 798–803

    Google Scholar 

  32. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Natural computing series. Springer, New York

    Google Scholar 

  33. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  34. Reynolds AM, Frey MA (2007) Free-flight odor tracking in dorsophila is consistent with an optimal intermittent scale-free search. PLoS One 2(4):e354

    Article  Google Scholar 

  35. Richer TJ, Blackwell TM (2006) The Lévy particle swarm. In: Proceedings of IEEE congress on evolutionary computation, Canada, pp 808–815

    Google Scholar 

  36. Rönkkönen J (2009) Continuous multimodal gloabal optimization with differential evolution-based methods. PhD thesis, Lappeenranta University of Technology, Finland

    Google Scholar 

  37. Saha A, Deb K (2010) A bi-criterion approach to multimodal optimization: self-adaptive approach. In: Proceedings of international conference on simulated evolution and learning, India, pp 95–104

    Google Scholar 

  38. Schwefel H-P (1995) Evolution and optimum seeking. Wiley, New York

    MATH  Google Scholar 

  39. Stoneking D, Bilbro G, Trew R, Gilmore P, Kelley CT (1992) Yield optimization Using a GaAs process simulator coupled to a physical device model. IEEE Trans Microw Theory Tech 40(7):1353–1363

    Google Scholar 

  40. Tasoulis D, Plagianakos V, Vrahatis M (2005) Clustering in evolutionary algorithms to effectively compute simultaneously local and global minima. In: IEEE congress on evolutionary computation, Scotland, pp 1847–1854

    Google Scholar 

  41. Torczon V (1991) On the convergence of the multidimensional search algorithm. SIAM J Optim 1(1):123–145

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature and biological inspired computing, India, pp 210–214

    Google Scholar 

  43. Yang X-S, Deb S (2010) Engineering optimization by Cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  44. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization. Studies in computational intelligence. Springer, Berlin, pp 65–74

    Google Scholar 

  45. Zaharie D (2004) Extension of differential evolution algorithm for multimodal optimization. In: International symposium on symbolic and numeric algorithms for scientific computing, Romania, pp 523–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momin Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jamil, M., Zepernick, HJ., Yang, XS. (2017). Multimodal Function Optimization Using an Improved Bat Algorithm in Noise-Free and Noisy Environments. In: Patnaik, S., Yang, XS., Nakamatsu, K. (eds) Nature-Inspired Computing and Optimization. Modeling and Optimization in Science and Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-50920-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50920-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50919-8

  • Online ISBN: 978-3-319-50920-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics