The Nature of Nature: Why Nature-Inspired Algorithms Work

Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 10)

Abstract

Nature has inspired many algorithms for solving complex problems. Understanding how and why these natural models work leads not only to new insights about nature, but also to an understanding of deep relationships between familiar algorithms. Here, we show that network properties underlie and define a whole family of nature-inspired algorithms. In particular, the network defined by neighbourhoods within landscapes (real or virtual) underlies the searches and phase transitions mediate between local and global search. Three paradigms drawn from computer science—dual-phase evolution, evolutionary dynamics and generalized local search machines—provide theoretical foundations for understanding how nature-inspired algorithms function. Several algorithms provide useful examples, especially genetic algorithms, ant colony optimization and simulated annealing.

Keywords

Nature-inspired algorithms Dual-phase evolution Evolutionary dynamics Generalized local search machines 

References

  1. 1.
    Aleti A (2014) Designing automotive embedded systems with adaptive genetic algorithms. Autom Softw Eng 22(2):199–240CrossRefGoogle Scholar
  2. 2.
    Aleti A, Grunske L (2015) Test data generation with a kalman filter-based adaptive genetic algorithm. J Syst Softw 103:343–352CrossRefGoogle Scholar
  3. 3.
    Aleti A, Grunske L, Meedeniya I, Moser I (2009) Let the ants deploy your software—an aco based deployment optimisation strategy. In: 24th IEEE/ACM International Conference on Automated Software Engineering ASE ’09, pp 505–509Google Scholar
  4. 4.
    Ammar HB, Tuyls K, Kaisers M (2012) Evolutionary dynamics of ant colony optimization. In: Timm IJ, Guttmann C (eds) Multiagent system technologies,Oct. Lecture notes in computer science, vol 7598. Springer, Berlin Heidelberg, pp 40–52. doi:10.1007/978-3-642-33690-4_6
  5. 5.
    Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142CrossRefGoogle Scholar
  6. 6.
    Blum C (2008) Beam-ACO for simple assembly line balancing. INFORMS J Comput 20(4):618–627CrossRefMATHGoogle Scholar
  7. 7.
    Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308CrossRefGoogle Scholar
  8. 8.
    Börgers T, Sarin R (1997) Learning through reinforcement and replicator dynamics. J Econ Theor 77(1):1–14 NovMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brenner T (1998) Can evolutionary algorithms describe learning processes? J Evol Econ 8(3):271–283CrossRefGoogle Scholar
  10. 10.
    Broom M, Rychtář J (2013) Game-theoretical models in biology. Chapman and Hall/CRCGoogle Scholar
  11. 11.
    Chellapilla K, Fogel DB (2001) Evolving an expert checkers playing program without using human expertise. IEEE Trans Evol Comput 5(4):422–428CrossRefGoogle Scholar
  12. 12.
    Davis TE (1991) Toward an extrapolation of the simulated annealing convergence theory onto the simple genetic algorithm. Ph.D. thesis, University of FloridaGoogle Scholar
  13. 13.
    Davis TE, Príncipe JC (1991) A simulated annealing like convergence theory for the simple genetic algorithm. In: ICGA, pp 174–181Google Scholar
  14. 14.
    Davis TE, Principe JC (1993) A markov chain framework for the simple genetic algorithm. Evol comput 1(3):269–288CrossRefGoogle Scholar
  15. 15.
    Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the argentine ant. J Insect Behav 3(2):159–168CrossRefGoogle Scholar
  16. 16.
    Dorigo M (1992) Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano, ItalyGoogle Scholar
  17. 17.
    Dorigo M, Birattari M (2010) Ant colony optimization. In: Encyclopedia of machine learning. Springer, pp 36–39Google Scholar
  18. 18.
    Dueck G (1993) New optimization heuristics: the great deluge algorithm and the record-to-record travel. J Comput phys 104(1):86–92MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Erdős P, Rényi A (1959) On random graphs Publ Math (Debrecen) 6:290–297Google Scholar
  20. 20.
    Erdős P, Rényi A (1960) On the evolution of random graphs. Mat Kutato Int Koz 1(5):17–61MathSciNetMATHGoogle Scholar
  21. 21.
    Ficici S, Melnik O, Pollack J (2000) A game-theoretic investigation of selection methods used in evolutionary algorithms. In: Proceedings of the 2000 congress on evolutionary computation, vol 2, pp 880–887Google Scholar
  22. 22.
    Ficici SG, Pollack JB (2000) A game-theoretic approach to the simple coevolutionary algorithm. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel H-P (eds) Parallel problem solving from nature PPSN VI. Lecture notes in computer science, 1917. Springer, Berlin Heidelberg, pp 467–476. doi:10.1007/3-540-45356-3_46
  23. 23.
    Fisher RA (1958) Polymorphism and natural selection. J Ecol 46(2):289–293 JulCrossRefGoogle Scholar
  24. 24.
    Fraser G, Arcuri A, McMinn P (2015) A memetic algorithm for whole test suite generation. J Syst Softw 103:311–327Google Scholar
  25. 25.
    Fudenberg D, Levine D (1998) The theory of learning in games. MIT Press, Cambridge MAMATHGoogle Scholar
  26. 26.
    Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 207–233Google Scholar
  27. 27.
    García J, Traulsen A (2012) The structure of mutations and the evolution of cooperation. PloS one 7(4):e35287CrossRefGoogle Scholar
  28. 28.
    Goldberg DE, Segrest P (1987) Finite markov chain analysis of genetic algorithms. In: Proceedings of the 2nd international conference on genetic algorithms, vol 1, p 1Google Scholar
  29. 29.
    González MA, Vela CR, Varela R (2012) A competent memetic algorithm for complex scheduling. Nat Comput 11(1):151–160MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Granville V, Křivánek M, Rasson J-P (1994) Simulated annealing: a proof of convergence. IEEE Trans Pattern Anal Mach Intell 16(6):652–656CrossRefGoogle Scholar
  31. 31.
    Green DG (1982) Fire and stability in the postglacial forests of southwest nova scotia. J Biogeogr 9:29–40CrossRefGoogle Scholar
  32. 32.
    Green DG (1994) Connectivity and complexity in ecological systems. Pac Conserv Biol 1(3):194–200CrossRefGoogle Scholar
  33. 33.
    Green DG, Klomp NI, Rimmington GR, Sadedin S (2006a) Complexity in landscape ecology. Springer, AmsterdamCrossRefGoogle Scholar
  34. 34.
    Green DG, Leishman TG, Sadedin S (2006b) Dual phase evolution—a mechanism for self-organization in complex systems. InterJournal, 1–8Google Scholar
  35. 35.
    Green DG, Liu J, Abbass H (2014) Dual phase evolution. Springer, AmsterdamCrossRefGoogle Scholar
  36. 36.
    Green DG, Newth D, Kirley MG (2000) Connectivity and catastrophe—towards a general theory of evolution. In: Bedau M, McCaskill JS, Packard NH, Rasmussen S, McCaskill J, Packard N (eds) Proceedings of the 7th international conference on the synthesis and simulation of living systems (ALife VII)Google Scholar
  37. 37.
    Grinstead CM, Snell JL (2012) Introduction to probability. American Mathematical SocGoogle Scholar
  38. 38.
    Gutjahr WJ (2000) A graph-based ant system and its convergence. Future Gener Comput Syst 16(8):873–888CrossRefGoogle Scholar
  39. 39.
    Gutjahr WJ (2002) Aco algorithms with guaranteed convergence to the optimal solution. Inf Process Lett 82(3):145–153MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res 13(2):311–329MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Hernandez G, Nino F, Garcia J, Dasgupta D (2004) On geometric and statistical properties of the attractors of a generic evolutionary algorithm. In: Congress on Evolutionary Computation, CEC2004, vol 2. IEEE, pp 1240–1247Google Scholar
  42. 42.
    Hernandez G, Wilder K, Nino F, Garcia J (2005) Towards a self-stopping evolutionary algorithm using coupling from the past. In: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, pp 615–620Google Scholar
  43. 43.
    Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems: mathematical aspects of selection. Cambridge University Press, CambridgeMATHGoogle Scholar
  44. 44.
    Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Hoos HH, Stützle T (2004) Stochastic local search: foundations & applications. ElsevierGoogle Scholar
  46. 46.
    Houck CR, Joines JA, Kay MG (1996) Utilizing Lamarckian evolution and the Baldwin effect in hybrid genetic algorithms. NCSU-IE Technical Report 96-01Google Scholar
  47. 47.
    Kemeny JG, Snell JL (1960) Finite markov chains, vol 356. van Nostrand Princeton, NJMATHGoogle Scholar
  48. 48.
    Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Kirley M, Green DG, Newth D (2000) Multi-objective problem, multi-species solution: an application of the cellular genetic algorithm. In: Mohammadian M (ed) Proceedings of international conference on advances in intelligent systems: theory and applications. IOS Press, pp 129–134Google Scholar
  50. 50.
    Kirley MG (2002) A cellular genetic algorithm with disturbances: optimisation using dynamic spatial interactions. J Heuristics 8:242–321CrossRefMATHGoogle Scholar
  51. 51.
    Kirley MG, Li X, Green DG (1999) Investigation of a cellular genetic algorithm that mimics landscape ecology. Lect Notes Comput Sci 1585(1999):90–97CrossRefGoogle Scholar
  52. 52.
    Levine J, Ducatelle F (2004) Ant colony optimization and local search for bin packing and cutting stock problems. J Oper Res Soc 55(7):705–716CrossRefMATHGoogle Scholar
  53. 53.
    Liu W-B, Wang X-J (2008) An evolutionary game based particle swarm optimization algorithm. J Comput Appl Math 214(1):30–35 AprMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  55. 55.
    McAvoy A (2015) Stochastic selection processes. arXiv preprint arXiv:1511.05390
  56. 56.
    Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon Press, OxfordMATHGoogle Scholar
  57. 57.
    Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report 826, California Institute of Technology, Pasadena, California, USAGoogle Scholar
  58. 58.
    Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, pp 219–234Google Scholar
  59. 59.
    Nix AE, Vose MD (1992) Modeling genetic algorithms with markov chains. Ann Math Artif Intell 5(1):79–88MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Nowak MA (2006) Evolutionary dynamics. Harvard University PressGoogle Scholar
  61. 61.
    Paperin G, Green DG, Leishman TG (2008) Dual phase evolution and self-organisation in networks. In: Li X, Kirley M, Zhang M, Green D, Ciesielski V, Abbass H, Michalewicz Z, Hendtlass T, Deb K, Tan KC, Branke J, Shi Y (eds) Proceedings of the 7th international conference on simulated evolution and learning. Springer, Melbourne, AustraliaGoogle Scholar
  62. 62.
    Paperin G, Green DG, Sadedin S (2011) Dual phase evolution in complex adaptive systems. J R Soc InterfaceGoogle Scholar
  63. 63.
    Pelillo M (1999) Replicator equations, maximal cliques, and graph isomorphism. Neural Comput 11(8):1933–1955CrossRefGoogle Scholar
  64. 64.
    Popovici E, Bucci A, Wiegand RP, De Jong ED (2012) Coevolutionary principles. In: Handbook of natural computing. Springer, pp 987–1033Google Scholar
  65. 65.
    Propp JG, Wilson DB (1996) Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct Algorithms 9(1–2):223–252MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Rager M, Gahm C, Denz F (2015) Energy-oriented scheduling based on evolutionary algorithms. Comput Oper Res 54:218–231MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Rashedi E, Nezamabadi-pour HSS (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13)Google Scholar
  68. 68.
    Savage JE (1998) Models of computation: exploring the power of computingGoogle Scholar
  69. 69.
    Schmitt LM (2001) Theory of genetic algorithms. Theor Comput Sci 259:1–61MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Skyrms B (2003) The stag-hunt game and the evolution of social structure. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  71. 71.
    Strogatz S (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Cambridge, MassachusettsMATHGoogle Scholar
  72. 72.
    Stützle T, Dorigo M (2002) A short convergence proof for a class of ant colony optimization algorithms. IEEE Trans Evol Comput 6(4):358–365CrossRefGoogle Scholar
  73. 73.
    Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1):145–156 JulMathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Trautmann H, Wagner T, Naujoks B, Preuss M, Mehnen J (2009) Statistical methods for convergence detection of multi-objective evolutionary algorithms. Evol Comput 17(4):493–509Google Scholar
  75. 75.
    Turney P, Whitley D, Anderson R (1997) Evolution, learning and instinct: 100 years of the baldwin effect. Evolu Comput 4(3):Google Scholar
  76. 76.
    Velez M, Nino F, Alonso OM (2004) A game-theoretic approach to artificial immune networks. In: Artificial immune systems. Springer, pp 372–385Google Scholar
  77. 77.
    Voset MD, Liepinsl GE (1991) Punctuated equilibria in genetic search. Complex Syst 5:31–44MathSciNetGoogle Scholar
  78. 78.
    Whitley LD, Gordon VS, Mathias KE (1994) Lamarckian evolution, the baldwin effect and function optimization. In: Proceedings of the international conference on evolutionary computation. The 3rd conference on parallel problem solving from nature. Lecture notes in computer science. Springer, pp 6–15Google Scholar
  79. 79.
    Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159Google Scholar
  80. 80.
    Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237Google Scholar
  81. 81.
    Yang XS (2008) Nature-inspired metaheuristic algorithms frome. Luniver PressGoogle Scholar
  82. 82.
    Yang XS (2010) A new metaheuristic bat-inspired algorithmGoogle Scholar
  83. 83.
    Yang X-S (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Lecture notes in computer science, vol 7445, pp 240–249Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonash UniversityClaytonAustralia

Personalised recommendations