Skip to main content

A graph-based, semi-supervised, credit card fraud detection system

  • Conference paper
  • First Online:
Complex Networks & Their Applications V (COMPLEX NETWORKS 2016 2016)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 693))

Included in the following conference series:

  • 2958 Accesses

Abstract

Global card fraud losses amounted to 16.31 Billion US dollars in 2014 [18]. To recover this huge amount, automated Fraud Detection Systems (FDS) are used to deny a transaction before it is granted. In this paper, we start from a graph-based FDS named APATE [28]: this algorithm uses a collective inference algorithm to spread fraudulent influence through a network by using a limited set of confirmed fraudulent transactions. We propose several improvements from the network data analysis literature [16] and semi-supervised learning [9] to this approach. Furthermore, we redesigned APATE to fit to e-commerce field reality. Those improvements have a high impact on performance, multiplying Precision@100 by three, both on fraudulent card and transaction prediction. This new method is assessed on a three-months real-life e-commerce credit card transactions data set obtained from a large credit card issuer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system. Journal of Network and Computer Applications 68, 90–113 (2016)

    Google Scholar 

  2. Baesens, B., Van Vlasselaer, V., Verbeke, W.: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection. Wiley Publishing (2015)

    Google Scholar 

  3. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: A comparative study. Decision Support Systems 50(3), 602–613 (2011)

    Google Scholar 

  4. Bolton, R., Hand, D.: Statistical fraud detection: A review. Statistical science 17, 235–249 (2002)

    Google Scholar 

  5. Bolton, R.J., Hand, D.J.: Unsupervised profiling methods for fraud detection. In: Proceedings of the Credit Scoring and Credit Control VII Conference, p. 235255 (2001)

    Google Scholar 

  6. Brandes, U., Erlebach, T.: Network analysis: methodological foundations. Springer-Verlag (2005)

    Google Scholar 

  7. Braun, F., Caelen, O., Smirnov, E., Kelk, S., Lebichot, B.: Improving card fraud detection through suspicious pattern discovery. Submitted for publication (2016)

    Google Scholar 

  8. of Certified Fraud Examiners, A.: Report to the nation (2002). URL \http://www.acfe. com/uploadedFiles/ACFE_Website/Content/documents/2002RttN.pdf

    Google Scholar 

  9. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. MIT Press (2006)

    Google Scholar 

  10. Dal Pozzolo, A.: Adaptive machine learning for credit card fraud detection. Ph.D. thesis, Universite Libre de Bruxelles (2015)

    Google Scholar 

  11. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection and concept-drift adaptation with delayed supervised information. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

    Google Scholar 

  12. Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert System with Applications 10(41), 4915–4928 (2014)

    Google Scholar 

  13. Demsar, J.: Statistical comparaison of classifiers over multiple data sets. Journal of Machine Learning Research 7 pp. 1–30 (2006)

    Google Scholar 

  14. commerce Europe, E.: Global b2c e-commerce light report 2015 (2014). URL \https://www.ecommerce-europe.eu/facts-figures/free-light-reports

    Google Scholar 

  15. Fawcett, T., Provost, F.: Adaptive fraud detection. Data Mining and Knowledge Discovery 1, 291–316 (1997)

    Google Scholar 

  16. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on a graph on collaborative recommendation and semisupervised classification. Neural Networks 31, 53–72 (2012)

    Google Scholar 

  17. Hara, K., Suzuki, I., Shimbo, M., Kobayashi, K., Fukumizu, K., Radovanovic, M.: Localized centering: Reducing hubness in large-sample data. In: Proceedings of the Association for the Advancement of Artificial Intelligence Conference, pp. 2645–2651 (2015)

    Google Scholar 

  18. HSN Consultants, I.: The nilson report (2015). URL \https://www.nilsonreport.com/publication_newsletter_archive_issue.php?issue=1068

    Google Scholar 

  19. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer-Verlag (1976)

    Google Scholar 

  20. Lebichot, B., Kivimaki, I., Franc¸oisse, K., Saerens, M.: Semi-supervised classification through the bag-of-paths group betweenness. IEEE Transactions on Neural Networks and Learning Systems 25, 1173–1186 (2014)

    Google Scholar 

  21. Mantrach, A., van Zeebroeck, N., Francq, P., Shimbo, M., Bersini, H., Saerens, M.: Semisupervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recognition 44(6), 1212 – 1224 (2011)

    Google Scholar 

  22. Newman, M.: Networks: an introduction. Oxford University Press (2010)

    Google Scholar 

  23. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999). Previous number = SIDL-WP-1999-0120

    Google Scholar 

  24. Phua, C., Lee, V., Smith-Miles, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. Computing Research Repository abs/1009.6119 (2010)

    Google Scholar 

  25. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research 11, 2487–2531 (2010)

    Google Scholar 

  26. Radovanović, M., Nanopoulos, A., Ivanović, M.: On the existence of obstinate results in vector space models. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 186–193. ACM (2010)

    Google Scholar 

  27. Theodoridis, S., Koutroumbas, K.: Pattern recognition, 4th ed. Academic Press (2009)

    Google Scholar 

  28. Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B.: Apate: A novel approach for automated credit card transaction fraud detection using network-based extensions. Decision Support Systems 75, 38–48 (2015)

    Google Scholar 

  29. Weston, D.J., Hand, D.J., Adams, N.M., Whitrow, C., Juszczak, P.: Plastic card fraud detection using peer group analysis. Advances in Data Analysis and Classification 2(1), 45–62 (2008)

    Google Scholar 

  30. Zaslavsky, V., Strizhak, A.: Credit card fraud detection using self-organizing maps. Information and Security 18, 48 (2006)

    Google Scholar 

  31. Zhou, D., Bousquet, O., Lal, T., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: Proceedings of the Neural Information Processing Systems Conference (NIPS 2003), pp. 237–244 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bertrand Lebichot , Fabian Braun , Olivier Caelen or Marco Saerens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lebichot, B., Braun, F., Caelen, O., Saerens, M. (2017). A graph-based, semi-supervised, credit card fraud detection system. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds) Complex Networks & Their Applications V. COMPLEX NETWORKS 2016 2016. Studies in Computational Intelligence, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-50901-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50901-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50900-6

  • Online ISBN: 978-3-319-50901-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics