Abstract
A recent article criticized social media platforms for failing to mobilize society into action long enough to address any major global issue. This is attributed to the simplistic design of current social media platforms, which encourage ideas to spread virally but do not support consensus formation which might lead to lasting social change. One reason for this could be the well known echo chamber phenomenon, whereby people tend to discuss issues only with other like-minded people. Social media has been blamed for encouraging the echo chamber effect and increasing polarization in society. For example, in Twitter, it is very common for users to be followed by others with similar views. Is this a reflection of real life or does Twitter actually increase polarization of views? This paper investigates this by comparing the Twitter follows network at two points in time and detecting communities in the network of reciprocated follows relationships. We find that new edges are (at least 3-4 times) more likely to be created inside existing communities than between communities, and existing edges are more likely to be removed if they are between communities. This leads to the conclusion that Twitter communities are indeed becoming more polarized as time passes.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery, pp. 36–43. ACM (2005)
Amor, B., Vuik, S., Callahan, R., Darzi, A., Yaliraki, S.N., Barahona, M.: Community detection and role identification in directed networks: understanding the twitter network of the care.data debate. In: N. Adams N Heard (ed.) Dynamic networks and cyber-security., vol. abs/1508.03165. World Scientific Press (2016)
Cebrian, M., Rahwan, I., Pentland, A.S.: Beyond viral. Commun. ACM 59(4), 36–39 (2016). DOI 10.1145/2818992. URL http://doi.acm.org/10.1145/2818992
Clauset, A.: Finding local community structure in networks. Physical review E 72(2), 026,132 (2005)
Conover, M., Ratkiewicz, J., Francisco, M.R., Gonc¸alves, B., Menczer, F., Flammini, A.: Political polarization on twitter. ICWSM 133, 89–96 (2011)
Dewey, C.: How twitter makes the political echo chamber worse. https: //www.washingtonpost.com/news/the-fix/wp/2013/09/03/how-twitter-makes-the-political-echo-chamber-worse/ (2013)
DiFonzo, N.: The echo-chamber effect. http://www.nytimes.com/roomfordebate/2011/04/21/barack-obama-and-the-psychology-of-the-birther-myth/the-echo-chamber-effect (2011)
Fortunato, S.: Community detection in graphs. Physics reports 486(3), 75–174 (2010)
Newman, M.E.: Mixing patterns in networks. Physical Review E 67(2), 026,126 (2003)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Physical review E 69(2), 026,113 (2004)
Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105(4), 1118–1123 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Du, S., Gregory, S. (2017). The Echo Chamber Effect in Twitter: does community polarization increase?. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds) Complex Networks & Their Applications V. COMPLEX NETWORKS 2016 2016. Studies in Computational Intelligence, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-50901-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-50901-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50900-6
Online ISBN: 978-3-319-50901-3
eBook Packages: EngineeringEngineering (R0)