Clustering of Paths in Complex Networks

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 693)

Abstract

While network analysis is more than 70 years old, the analysis of paths in complex networks is yet almost negligible. Here, we introduce different measures of computing the pairwise similarity of paths, either simply based on the elements in the paths, their sequence, on the graph in which they are embedded, or incorporating all three features. Based on ground-truth in a data set concerning how people solve a one-player puzzle, we show that the classification of the paths using the similarity measures in a hierarchical clustering approach performs best for the similarity measures which integrate all three features. We thus give first evidence that path similarity measures provide another dimension to mine and analyze complex networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. II–623. IEEE (2003)Google Scholar
  2. 2.
    Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting Commuting Patterns by Clustering Subtrajectories. In: Algorithms and Computation: 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, September, pp. 644–655 (2008)Google Scholar
  3. 3.
    Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 521–524. IEEE (2004)Google Scholar
  4. 4.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1082–1090. ACM (2011)Google Scholar
  5. 5.
    Dorn, I., Lindenblatt, A., Zweig, K.A.: The trilemma of network analysis. In: Proceedings of the 2012 IEEE/ACM international conference on Advances in Social Network Analysis and Mining, Istanbul (2012)Google Scholar
  6. 6.
    González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)Google Scholar
  7. 7.
    Gudmundsson, J., Thom, A., Vahrenhold, J.: Of Motifs and Goals: Mining Trajectory Data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL ’12, pp. 129–138. ACM (2012)Google Scholar
  8. 8.
    Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, New York, NY, USA (1997)Google Scholar
  9. 9.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et du jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  10. 10.
    Jarušek, P.: Modeling problem solving times in tutoring systems. Ph.D. thesis, Masarykova univerzita, Fakulta informatiky (2013)Google Scholar
  11. 11.
    Jarušek, P., Pelánek, R.: Analysis of a simple model of problem solving times. In: S. Cerri, W. Clancey, G. Papadourakis, K. Panourgia (eds.) Intelligent Tutoring Systems, Lecture Notes in Computer Science, vol. 7315, pp. 379–388. Springer, Berlin Heidelberg (2012)Google Scholar
  12. 12.
    Junejo, I.N., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 716–719. IEEE (2004)Google Scholar
  13. 13.
    Kumar, P., Raju, B.S., Krishna, P.R.: A new similarity metric for sequential data. Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends: New Trends p. 233 (2011)Google Scholar
  14. 14.
    Laasonen, K.: Clustering and prediction of mobile user routes from cellular data. In: Knowledge Discovery in Databases: PKDD 2005, Lecture Notes in Computer Science, vol. 3721, pp. 569–576. Springer, Berlin Heidelberg (2005)Google Scholar
  15. 15.
    Makris, D., Ellis, T.: Path detection in video surveillance. Image and Vision Computing 20(12), 895–903 (2002)Google Scholar
  16. 16.
    Mannila, H., Moen, P.: Similarity between event types in sequences. In: Proceedings of the First International Conference on Data Warehousing and Knowledge Discovery, pp. 271–280. Springer, London (1999)Google Scholar
  17. 17.
    Mannila, H., Ronkainen, P.: Similarity of event sequences. In: Proceedings of the 4th International Workshop on Temporal Representation and Reasoning (TIME), p. 136. IEEE Computer Society (1997)Google Scholar
  18. 18.
    Moen, P.: Attribute, event sequence, and event type similarity notions for data mining. Ph.D. thesis, University of Helsinki, Department of Computer Science (2000)Google Scholar
  19. 19.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)Google Scholar
  20. 20.
    Wang, W., Zaïane, O.R.: Clustering web sessions by sequence alignment. In: Database and Expert Systems Applications, 2002. Proceedings. 13th International Workshop on, pp. 394–398. IEEE (2002)Google Scholar
  21. 21.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graph Theory and Complex Network Analysis GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations