Specific Growth Rate Estimation in Fed-Batch Bioreactor Using Super Twisting Sliding Mode Observer

  • María Clara SalazarEmail author
  • Héctor Botero
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


This paper presents the application of a second order sliding mode observer based on the classic super twisting algorithm in order to estimate the specific growth rate in a model of fed-batch bioprocess. This observer estimates the specific growth rate without assuming a specific model (such as Monod or Haldane), using the biomass concentration measurement. The observer allows the fixed time estimation of the specific growth rate, and provides robustness against uncertainty and parametric changes.


Bioprocess Finite time convergence Sliding mode observer Specific growth rate estimation 


  1. 1.
    Dochain, D.: State and parameter estimation in chemical and biochemical processes: a tutorial. J. Process Control 13(8), 801–818 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    De Battista, H., Picó, J., Picó-Marco, E.: Globally stabilizing control of fed-batch processes with Haldane kinetics using growth rate estimation feedback. J. Process Control 16(8), 865–875 (2006)CrossRefGoogle Scholar
  3. 3.
    Nuñez, S., Garelli, F., De Battista, H.: Product-based sliding mode observer for biomass and growth rate estimation in Luedeking-Piret like processes. Chem. Eng. Res. Des. 105, 24–30 (2016)CrossRefGoogle Scholar
  4. 4.
    Bastin, G., Dochain, D.: On-line estimation of microbial specific growth rates. Automatica 22(6), 705–709 (1986)CrossRefzbMATHGoogle Scholar
  5. 5.
    De Battista, H., Picó, J., Garelli, F., Vignoni, A.: Specific growth rate estimation in (fed-)batch bioreactors using second-order sliding observers. J. Process Control 21(7), 1049–1055 (2011)CrossRefGoogle Scholar
  6. 6.
    Moreno, J., Mendoza, I.: Application of Super-twisting-like observers for bioprocesses. In: 2014 13th International Workshop on Variable Structure Systems (VSS), pp. 1–6, June 2014Google Scholar
  7. 7.
    Picó, J., De Battista, H., Garelli, F.: Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement. J. Process Control 19(8), 1314–1323 (2009)CrossRefGoogle Scholar
  8. 8.
    Oliveira, R., Ferreira, E.C.: Feyo de Azevedo, S.: Stability, dynamics of convergence and tuning of observer-based kinetics estimators. J. Process Control 12(2), 311–323 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Perrier, M., de Azevedo, S.F., Ferreira, E.C., Dochain, D.: Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters. Control Eng. Prac. 8(4), 377–388 (2000)CrossRefGoogle Scholar
  10. 10.
    Moreno, J.: A linear framework for the robust stability analysis of a Generalized Super-Twisting Algorithm. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE, pp. 1–6, January 2009Google Scholar
  11. 11.
    Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform robust exact differentiator. IEEE Trans. Autom. Control 56(11), 2727–2733 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mohd Ali, J., Ha Hoang, N., Hussain, M.A., Dochain, D.: Review and classification of recent observers applied in chemical process systems. Comput. Chem. Eng. 76, 27–41 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhao, L., Wang, J., Yu, T., Chen, K., Liu, T.: Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements. Chin. J. Chem. Eng. 23(11), 1801–1810 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Facultad de Minas, Departamento de Energía Eléctrica y AutomáticaUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations