Multi-agent Approach for Solving the Dynamic Home Health Care Routing Problem

  • Eduyn Ramiro López-Santana
  • Julián Alberto Espejo-DíazEmail author
  • Germán Andrés Méndez-Giraldo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


This paper presents the design, conceptualization and implementation of a multi-agent system which solves dynamically the caregivers’ routing problem accepting new requests when the system is already running. To do so we propose a multi-agent approach that allows to simulate a home health care system using a mixed integer programming model to better make the routing schemes of the caregivers. The approach was implemented in the Jade middleware, was tested in multiple scenarios changing the numbers of caregivers, the length and the numbers periods of simulation and finally numerical results for the simulations are presented.


Dynamic routing Home health care Multi-agent systems Simulation JADE 



We thank Fair Isaac Corporation (FICO) for providing us with Xpress-MP licenses under the Academic Partner Program subscribed with Universidad Distrital Francisco Jose de Caldas (Colombia), and thank Centro de Investigaciones y Desarrollo Científico at Universidad Distrital (Colombia) by supporting partially under Grant No. 2-602-468-14. Last, but not least, the authors would like to thank the comments of the anonymous referees that significantly improved our paper.


  1. 1.
    Benzarti, E., Sahin, E., Dallery, Y.: A literature review on operations management based models developed for home health care services, Paris, France (2010)Google Scholar
  2. 2.
    Yalcindag, S., Matta, A., Sahin, E.: Operator assignment and routing problems in home health care services. In: 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 329–334 (2012)Google Scholar
  3. 3.
    Triki, N., Garaix, T., Xie, X.: A two-phase approach for periodic home health care planning. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 518–523. IEEE (2014)Google Scholar
  4. 4.
    Gutiérrez, E.V., Galvis, O.D., López, D.A., Mock-Kow, J.S., Zapata, I., Vidal, C.J.: Gestión logística en la prestación de servicios de hospitalización domiciliaria en el Valle del Cauca: caracterización y diagnóstico. Estudios Gerenciales 30, 441–450 (2014)CrossRefGoogle Scholar
  5. 5.
    Yalcindag, S., Matta, A., Sahin, E.: Human resource scheduling and routing problems in home health care context: a literature review. In: 37th Conference on Operational Research Applied to Health Services (ORAHS), Cardiff, pp. 1–34 (2012)Google Scholar
  6. 6.
    Barbucha, D., Jedrzejowicz, P.: Multi-agent platform for solving the dynamic vehicle routing problem. In: 11th International IEEE Conference on Intelligent Transportation Systems, ITSC 2008, pp. 517–522 (2008)Google Scholar
  7. 7.
    Yu-xian, Z., Lei, L., Hong, W., Yan-yan, Z., Xu, G., Meng, C.: Approach to the distributed job shop scheduling based on multi-agent. In: 2008 IEEE International Conference on Automation and Logistics, pp. 2031–2034 (2008)Google Scholar
  8. 8.
    Macal, C.M., North, M.J.: Introductory tutorial: agent-based modeling and simulation, pp. 1451–1464 (2011)Google Scholar
  9. 9.
    Abras, S., Kieny, C., Ploix, S., Wurtz, F.: MAS architecture for energy management: developing smart networks with JADE platform. In: 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2013, pp. 26–27 (2013)Google Scholar
  10. 10.
    Fasanotti, L.: A distributed intelligent maintenance system based on artificial immune approach and multi-agent systems. In: Proceedings - 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, pp. 783–786 (2014)Google Scholar
  11. 11.
    Xu, M.: Production scheduling of agile manufacturing based on multi-agents. In: 2nd International Symposium on Knowledge Acquisition and Modeling, KAM 2009, vol. 2, pp. 323–325 (2009)Google Scholar
  12. 12.
    Weili, D., Songmengqiu: Multi agents based for humanistic intelligent class scheduling system. In: Proceedings - 3rd International Symposium on Information Science and Engineering, ISISE 2010, pp. 476–480 (2011)Google Scholar
  13. 13.
    Wahaishi, A.M., Aburukba, R.O.: An agent-based personal assistant for exam scheduling. In: Computer and Information Technology (WCCIT) (2013)Google Scholar
  14. 14.
    Garcés, A.E., Moreno, J., Múnera, S.: Modelo de simulación de una subasta de doble punta mediante el paradigma multi-agente. Revista Avances en Sistemas e Informática 6, 197–206 (2009)Google Scholar
  15. 15.
    De Santa-Eulalia, L.A., D’Amours, S., Frayret, J.M.: Modeling agent-based simulations for supply chain planning: the FAMASS methodological framework. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 1710–1718 (2010)Google Scholar
  16. 16.
    Zhang, Y., Wu, Q., Tang, X., Ma, Z.: Progresses for multi-agents system models. In: The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, vol. 3, pp. 44–48 (2010)Google Scholar
  17. 17.
    Yuan, Z., Fügenschuh, A.: Home health care scheduling: a case study. In: Applied Mathematics and Optimization Series, pp. 1–18 (2015)Google Scholar
  18. 18.
    Kergosien, Y., Lenté, C., Billaut, J.: Home health care problem an extended multiple Traveling Salesman Problem. In: Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2009), pp. 1–8 (2009)Google Scholar
  19. 19.
    Redjem, R., Marcon, E.: Operations management in the home care services: a heuristic for the caregivers’ routing problem. Flexible Serv. Manufact. J. 28, 280–303 (2016)CrossRefGoogle Scholar
  20. 20.
    Torres-Ramos, A., Alfonso-Lizarazo, E., Reyes-Rubiano, L., Quintero-Araújo, C.: Mathematical model for the home health care routing and scheduling problem with multiple treatments and time windows. In: Proceedings of the 1st International Conference on Mathematical Methods & Computational Techniques in Science & Engineering (MMCTSE 2014), pp. 140–145 (2014)Google Scholar
  21. 21.
    En-nahli, L., Allaoui, H., Nouaouri, I.: A multi-objective modelling to human resource assignment and routing problem for home health care services. IFAC-PapersOnLine 48, 698–703 (2015)CrossRefGoogle Scholar
  22. 22.
    Bard, J.F., Shao, Y., Qi, X., Jarrah, A.I.: The traveling therapist scheduling problem. IIE Trans. 46, 683–706 (2014)CrossRefGoogle Scholar
  23. 23.
    Yuan, B., Liu, R., Jiang, Z.: Home health care crew scheduling and routing problem with stochastic service times. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 564–569 (2014)Google Scholar
  24. 24.
    Misir, M., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: Hyper-heuristics with a dynamic heuristic set for the home care scheduling problem. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  25. 25.
    Hiermann, G., Prandtstetter, M., Rendl, A., Puchinger, J., Raidl, G.R.: Metaheuristics for solving a multimodal home-healthcare scheduling problem. Central Eur. J. Oper. Res. 23, 89–113 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health care problem. In: Operations Research Proceedings 2007 Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), 5–7 September 2007, pp. 297–302, Saarbrücken (2008)Google Scholar
  27. 27.
    Soler, W., Muñoz, M.G., Bragulat, E., Alvarez, A.: Triage: a key tool in emergency care. Anales del sistema sanitario de Navarra 33(Suppl. 1), 55–68 (2010)Google Scholar
  28. 28.
    García, M.M.: Estudio Del Triaje En Un Servicio De Urgencias Hospitalario. Revista Enfermería CyL. 5, 42–49 (2013)Google Scholar
  29. 29.
    López-Santana, E., Espejo-Díaz, J., Méndez-Giraldo, G.: Modelo de programación entera mixta para programación y ruteo en cuidado a la salud domiciliaria considerando la promesa de servicio. In: III Congreso Internacional de Industria y Organizaciones – Gestión de Cadenas de Abastecimiento en un Mundo Cambiante (in press, 2016). AcceptedGoogle Scholar
  30. 30.
    Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Willey series in Agent Technology. Wiley, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Eduyn Ramiro López-Santana
    • 1
  • Julián Alberto Espejo-Díaz
    • 1
    Email author
  • Germán Andrés Méndez-Giraldo
    • 1
  1. 1.Faculty of EngineeringUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations