Proposal for a Hybrid Expert System and an Optimization Model for the Routing Problem in the Courier Services

  • William Camilo Rodríguez-VásquezEmail author
  • Eduyn Ramiro López-SantanaEmail author
  • Germán Andrés Méndez-Giraldo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


Courier services consist generally in distributing packages or envelopes that are received daily for a set of customers geographically distributed through a fleet of vehicles. Thus, these services could be modeled as vehicle routing problem. The aim of this paper is to show an approach to solve this problem. We propose a three stage approached the first ones consist of scheduling, the second one is a clustering of customers, and the last one is a routing stage. Finally, we presented numerical results using a case study.


Courier service Clustering Vehicle routing problem Expert system 



The authors would like to thank the comments of the anonymous referees that significantly improved our paper and the anonymous courier services company that provide us the data input.


  1. 1.
    Farahani, R.Z., Rezapour, S., Kardar, L.: Logistics operations and management: concepts and models. Elsevier (2011). doi: 10.1016/c2010-0-67008-8
  2. 2.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications, vol. 9. SIAM, Philadelphia (2002). doi: 10.1137/1.9780898718515 CrossRefzbMATHGoogle Scholar
  3. 3.
    Archetti, C., Jabali, O., Speranza, M.G.: Multi-period vehicle routing problem with due dates. Comput. Oper. Res. 61, 122–134 (2015). doi: 10.1016/j.cor.2015.03.014 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges: Latest Advances and New Challenges. Springer, US (2008). doi: 10.1007/978-0-387-77778-8
  5. 5.
    Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57, 1472–1483 (2009). doi: 10.1016/j.cie.2009.05.009 CrossRefGoogle Scholar
  6. 6.
    Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). doi: 10.1016/j.cie.2015.12.007 CrossRefGoogle Scholar
  7. 7.
    Almoustafa, S., Hanafi, S., Mladenović, N.: New exact method for large asymmetric distance-constrained vehicle routing problem. Eur. J. Oper. Res. 226, 386–394 (2013). doi: 10.1016/j.ejor.2012.11.040 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cacchiani, V., Hemmelmayr, V.C., Tricoire, F.: A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Appl. Math. 163, 53–64 (2014). doi: 10.1016/j.dam.2012.08.032 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Arroyave, M.R., Naranjo, V.V.: Development of a model of urban freight distribution with logistics platforms applied to the city. Ing. USBmed. 5, 67–76 (2014). (in Spanish)Google Scholar
  10. 10.
    Sprenger, R., Mönch, L.: A methodology to solve large-scale cooperative transportation planning problems. Eur. J. Oper. Res. 223, 626–636 (2012). doi: 10.1016/j.ejor.2012.07.021 CrossRefGoogle Scholar
  11. 11.
    Clarke, G.U., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12, 568–581 (1964). doi: 10.1287/opre.12.4.568 CrossRefGoogle Scholar
  12. 12.
    Yepes Piqueras, V., Medina Folgado, J.R.: Economic optimization of transport networks VRPTW type. Rev. obras públicas Organo Prof los Ing caminos, canales y puertos, pp. 31–39 (2003). (in Spanish)Google Scholar
  13. 13.
    Lin, C.K.Y.: A vehicle routing problem with pickup and delivery time windows, and coordination of transportable resources. Comput. Oper. Res. 38, 1596–1609 (2011). doi: 10.1016/j.cor.2011.01.021 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jia, H., Li, Y., Dong, B., Ya, H.: An improved tabu search approach to vehicle routing problem. Procedia Soc. Behav. Sci. 96, 1208–1217 (2013). doi: 10.1016/j.sbspro.2013.08.138 CrossRefGoogle Scholar
  15. 15.
    Ding, Q., Hu, X., Sun, L., Wang, Y.: An improved ant colony optimization and its application to vehicle routing problem with time windows. Neurocomputing 98, 101–107 (2012). doi: 10.1016/j.neucom.2011.09.040 CrossRefGoogle Scholar
  16. 16.
    Pereira, F.B., Tavares, J.: Bio-inspired Algorithms for the Vehicle Routing Problem (2009). doi: 10.1007/978-3-540-85152-3
  17. 17.
    Chang, T.-S., Yen, H.-M.: City-courier routing and scheduling problems. Eur. J. Oper. Res. 223, 489–498 (2012). doi: 10.1016/j.ejor.2012.06.007 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fikar, C., Hirsch, P.: A matheuristic for routing real-world home service transport systems facilitating walking. J. Clean. Prod. 105, 300–310 (2015). doi: 10.1016/j.jclepro.2014.07.013 CrossRefGoogle Scholar
  19. 19.
    Ghiani, G., Manni, E., Quaranta, A., Triki, C.: Anticipatory algorithms for same-day courier dispatching. Transp. Res. Part E Logist. Transp. Rev. 45, 96–106 (2009). doi: 10.1016/j.tre.2008.08.003 CrossRefGoogle Scholar
  20. 20.
    Janssens, J., Van den Bergh, J., Sörensen, K., Cattrysse, D.: Multi-objective microzone-based vehicle routing for courier companies: from tactical to operational planning. Eur. J. Oper. Res. 242, 222–231 (2015). doi: 10.1016/j.ejor.2014.09.026 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yan, S., Lin, J.-R., Lai, C.-W.: The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands. Transp. Res. Part E Logist. Transp. Rev. 53, 34–48 (2013). doi: 10.1016/j.tre.2013.01.011 CrossRefGoogle Scholar
  22. 22.
    Badaró, S., Ibañez, L.J., Agüero, M.: Expert systems: fundamentals, methods and applications. Cienc. Tecnol. 1, 349–363 (2013). (in Spanish)Google Scholar
  23. 23.
    Turban, E.: Decision Support and Expert Systems: Management Support Systems, 2nd edn. Prentice Hall PTR (1989)Google Scholar
  24. 24.
    Patiño-Chirva, J.A., Daza-Cruz, Y.X., López-Santana, E.R.: A hybrid mixed-integer optimization and clustering approach to selective collection services problem of domestic solid waste. Ingeniería 21, 235–247 (2016)Google Scholar
  25. 25.
    Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics (2003). doi: 10.1007/b101874
  26. 26.
    Kara, I., Derya, T.: Formulations for Minimizing Tour Duration of the Traveling Salesman Problem with Time Windows. Procedia Econ. Financ. 26, 1026–1034 (2015). doi: 10.1016/S2212-5671(15)00926-0 CrossRefGoogle Scholar
  27. 27.
    López-Ibáñez, M., Blum, C.: Beam-ACO for the travelling salesman problem with time windows. Comput. Oper. Res. 37, 1570–1583 (2010). doi: 10.1016/j.cor.2009.11.015 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pureza, V., Morabito, R., Reimann, M.: Vehicle routing with multiple deliverymen: modeling and heuristic approaches for the VRPTW. Eur. J. Oper. Res. 218, 636–647 (2012). doi: 10.1016/j.ejor.2011.12.005 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, B., Yang, Z.Z., Yao, B.Z.: A hybrid algorithm for vehicle routing problem with time windows. Expert Syst. Appl. 38, 435–441 (2011). doi: 10.1016/j.eswa.2010.06.082 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • William Camilo Rodríguez-Vásquez
    • 1
    Email author
  • Eduyn Ramiro López-Santana
    • 1
    Email author
  • Germán Andrés Méndez-Giraldo
    • 1
  1. 1.Faculty of EngineeringUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations