Outlook - A New Generation of High-Precision Penning Trap

  • Florian Köhler-LangesEmail author
Part of the Springer Theses book series (Springer Theses)


Besides the determination of the electron mass and the g-factor difference of lithiumlike calcium isotopes, which have been presented in this thesis, further exciting bound-electron g-factor measurements have been performed in the medium-Z range in the previous years, e.g. the measurements of hydrogenlike and lithiumlike silicon, see [1, 2].


Trapping Potential Vertical Slit Insulator Ring Axial Resonator Ring Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sturm, S., Wagner, A., Schabinger, B., Zatorski, J., Harman, Z., Quint, W., Werth, G., Keitel, C.H., Blaum, K.: ‘g factor of hydrogenlike \(^{28}{\rm Si}^{13+}\)’. Phys. Rev. Lett. 107(2), 023002 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Wagner, A., Sturm, S., Köhler, F., Glazov, D.A., Volotka, A.V., Plunien, G., Quint, W., Werth, G., Shabaev, V.M., Blaum, K.: ‘g factor of lithiumlike silicon \(^{28}{\rm Si}^{11+}\)’. Phys. Rev. Lett. 110(3), 033003 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Quint, W., Moskovkhin, D.L., Shabaev, V.M., Vogel, M.: ‘Laser-microwave double-resonance technique for g-factor measurements in highly charged ions’. Phys. Rev. A 78(3), 032517 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    von Lindenfels, D., Brantjes, N.P.M., Birkl, G., Quint, W., Shabaev, V.M., Vogel, M.: ‘Bound electron g-factor measurement by double-resonance spectroscopy on a fine-structure transition’. Can. J. Phys. 89(1), 79–84 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Gabrielse, G., Haarsma, L., Rolston, S.L.: ‘Open-endcap penning traps for high precision experiments’. Int. J. Mass Spectrom. Ion Process. 88, 319–332 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Röux, C., Bohm, C., Dörr, A., Eliseev, S., George, S., Goncharov, M., Novikov, Y.N., Repp, J., Sturm, S., Ulmer, S., Blaum, K.: ‘The trap design of PENTATRAP’. Appl. Phys. B 107(4), 997–1005 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Roux, C.-E.: It high-resolution mass spectrometry: the trap design and detection system of PENTATRAP and new Q-values for neutrino studies. Doktorarbeit (2012)Google Scholar
  8. 8.
    Ulmer, S.: First observation of spin flips with a single proton stored in a cryogenic penning trap. Doktorarbeit (2011)Google Scholar
  9. 9.
    MATLAB: version (R2013a). Natick, Massachusetts, USA: The Math- Works Inc., (2013)Google Scholar
  10. 10.
    Lagarias, J.C., Jeffrey, C., Reeds, J.A., Wright, M.H., Wright, P.E.: ‘Convergence properties of the Nelder–Mead simplex method in low dimensions’. SIAM J. Optim. 9(1), 112–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ketter, J., Eronen, T., Hocker, M., Streubel, S., Blaum, K.: ‘Firstorder perturbative calculation of the frequency-shifts caused by static cylindrically-symmetric electric and magnetic imperfections of a Penning trap’. Int. J. Mass 358(0), 1–16 (2014)CrossRefGoogle Scholar
  12. 12.
    Mooser, A., Kracke, H., Blaum, K., Brauninger, S.A., Franke, K., Leiteritz, C., Quint, W., Rodegheri, C.C., Ulmer, S., Walz, J.: ‘Resolution of single spin flips of a single proton’. Phys. Rev. Lett. 110(14), 140405 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Mooser, A.: Der g-Faktor des Protons. Doktorarbeit (2013)Google Scholar
  14. 14.
    Repp, J.: The setup of the high-precision Penning-trap mass spectrometer PENTATRAP and first production studies of highly charged ions. Doktorarbeit (2012)Google Scholar
  15. 15.
    Kluge, H.-J. et al.: ‘Chapter 7 HITRAP: a facility at GSI for highly charged ions’. In: Salomonson, S., Lindroth, E. (eds.) Current Trends in Atomic Physics, Advances in Quantum Chemistry, vol. 53, pp. 83–98. Academic Press, New York (2008)Google Scholar
  16. 16.
    Crespo López-Urrutia, J.R., Dorn, A., Moshammer, R., Ullrich, J.: ‘The Freiburg electron beam ion trap/source project FreEBIT’. Phys. Scr. 1999(T80B), 502 (1999)CrossRefGoogle Scholar
  17. 17.
    von Lindenfels, D., Wiesel, M., Glazov, D.A., Volotka, A.V., Sokolov, M.M., Shabaev, V.M., Plunien, G., Quint, W., Birkl, G., Martin, A., Vogel, M.: ‘Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap’. Phys. Rev. A 87(2), 023412 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Shabaev, V.M., Glazov, D.A., Shabaeva, M.B., Yerokhin, V.A., Plunien, G., Soff, G.: ‘g factor of high-Z lithiumlike ions’. Phys. Rev. A 65(6), 062104 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Shabaev, V.M., Glazov, D.A., Oreshkina, N.S., Volotka, A.V., Plunien, G., Kluge, H.-J., Quint, W.: ‘g-factor of heavy ions: a new access to the fine structure constant’. Phys. Rev. Lett. 96(25), 253002 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations