Advertisement

Determination of the Atomic Mass of the Electron

  • Florian Köhler-LangesEmail author
Chapter
  • 399 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In the present chapter, I will present the measurement results of the atomic electron mass, which have been published in Sturm et al. (Nature, 506:467–470, 2014, [1]). An extensive paper focusing in detail on the line-shape model of the \(\varGamma \)-resonance, see Sect.  4.5, as well as on all the reviewed systematic shifts has been recently accepted (Köhler et al., J Phys B At Mol Opt Phys 48(14):144032, 2015, [2]). In the beginning of this chapter, in Sect. 5.1, I will introduce the data sets considered in the final analysis, which include measurement runs of three independently produced, single \(^{12}\)C\(^{5+}\) ions measured at different modified cyclotron energies.

Keywords

Frequency Ratio Larmor Frequency Systematic Shift Axial Frequency Dipole Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sturm, S., Köhler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)Google Scholar
  2. 2.
    Köhler, F., Sturm, S., Kracke, A., Werth, G., Quint, W., Blaum, K.: The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}{\rm C}^{5+}\). J. Phys. B: At. Mol. Opt. Phys. 48(14), 144032 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Multiphysics, COMSOL: version 4.2a COMSOL, IncGoogle Scholar
  4. 4.
    Ketter, J., Eronen, T., Höcker, M., Streubel, S., Blaum, K.: Firstorder perturbative calculation of the frequency-shifts caused by static cylindricallysymmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass 358, 1–16 (2014)CrossRefGoogle Scholar
  5. 5.
    Sturm, S.: The g-factor of the electron bound in \(^{28}{\rm Si}^{13+}\): the most stringent test of bound-state quantum electrodynamics. Doktorarbeit (2012)Google Scholar
  6. 6.
    Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84, 1527–1605 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Häffner, H.: Präzisionsmessung des magnetischen Moments des Elektrons in wasserstoffähnlichem Kohlenstoff. Doktorarbeit (2000)Google Scholar
  8. 8.
    Verdú, J. L.: Ultrapräzise Messung des elektronischen g-faktors in wasserstoffähnlichem Sauerstoff. Doktorarbeit (2003)Google Scholar
  9. 9.
    Farnham, D.L., Van Dyck, R.S., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598–3601 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Hori, M., Sótér, A., Barna, D., Dax, A., Hayano, R., Friedreich, S., Juhász, B., Pask, T., Widmann, E., Horváth, D., Venturelli, L., Zurlo, N.: Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 474, 484–488 (2011)CrossRefGoogle Scholar
  11. 11.
    Sturm, S., Wagner, A., Schabinger, B., Blaum, K.: Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107, 143003 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Beier, T., Djekic, S., Häffner, H., Indelicato, P., Kluge, H.-J., Quint, W., Shabaev, V.M., Verdú, J., Valenzuela, T., Werth, G., Yerokhin, V.A.: Determination of the electron’s mass from g-factor experiments on \(^{12}{\rm C}^{5+}\) and \(^{16}{\rm O}^{7+}\). Nucl. Instrum. Methods Phys. Res. B 205, 15–19 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations