Advertisement

Towards the Measurement of the Larmor-to-Cyclotron Frequency Ratio

  • Florian Köhler-LangesEmail author
Chapter
  • 388 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

After introducing in the previous Chap.  3 the underlying principles of non-destructive high-precision Penning trap measurements with single, highly charged particles, in the present chapter I will focus on our specific experimental setup and the technical information, which are essential for the understanding of the complete high-precision measurement process on the Larmor-to-cyclotron frequency ratio.

Keywords

Axial Frequency Magnetic Field Fluctuation Phase Jitter Analysis Trap Tuning Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schabinger, B.: Ein Experiment zur Bestimmung des g-Faktors des gebundenen Elektrons in wasserstoff- und lithiumähnlichen mittelschweren Ionen. Doktorarbeit (2011)Google Scholar
  2. 2.
    Sturm, S.: The G-Factor of the Electron Bound in \(^{28}\)Si\(^{13+}\): The Most Stringent Test of Bound-state Quantum Electrodynamics. Doktorarbeit (2012)Google Scholar
  3. 3.
    Wagner, A.: The G-factor of the Valence Electron Bound in Lithiumlike Silicon \(^{28}\)Si\(^{11+}\): The Most Stringent Test of Relativistic Many-electron Calculations in a Magnetic Field. Doktorarbeit (2013)Google Scholar
  4. 4.
    Stahl, S.K.-H.: A ufbau eines Experimentes zur Bestimmung elektronischer g-Faktoren einzelner wasserstoffähnlicher Ionen. Doktorarbeit (1998)Google Scholar
  5. 5.
    Hermanspahn, N.H.: Das magnetische Moment des gebundenen Elektrons in wasserstoffartigem Kohlenstoff (\(C^{5+}\) ). Doktorarbeit (1999)Google Scholar
  6. 6.
    Häffner, H.: Präzisionsmessung des magnetischen Moments des Elektrons in wasserstoffähnlichem Kohlenstoff. Doktorarbeit (2000)Google Scholar
  7. 7.
    Verdú, J.L.: Ultraprazise Messung des elektronischen g-faktors in wasserstoffähnlichem Sauerstoff. Doktorarbeit (2003)Google Scholar
  8. 8.
    Otamendi, J.A.: Development of an Experiment for Ultrahigh-Precision g-Factor Measurements in a Penning-Trap Setup. Doktorarbeit (2007)Google Scholar
  9. 9.
    Alonso, J., Blaum, K., Djekic, S., Kluge, H.-J., Quint, W., Schabinger, B., Stahl, S., Verdú, J., Vogel, M., Werth, G.: A miniature electron-beam ion source for in-trap creation of highly charged ions. Rev. Sci. Instrum. 77(3), 03A901 (2006)Google Scholar
  10. 10.
    Tönges, M.: Aufbau einer Mikrowellen-Anlage zur Spektroskopie an wasserstoffähnlichen Ionen in einem Penningkäfig. Dipolmarbeit (1996)Google Scholar
  11. 11.
    Gabrielse, G., Tan, J.: Self-shielding superconducting solenoid systems. J. Appl. Phys. 63(10), 5143–5148 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Gabrielse, G., Tan, J., Clateman, P., Orozco, L.A., Rolston, S.L., Tseng, C.H., Tjoelker, R.L.: A superconducting solenoid system which cancels fluctuations in the ambient magnetic field. J. Magn. Reson. (1969) 91(3), 564–572 (1991)Google Scholar
  13. 13.
    Ulmer, S.: First Observation of Spin Flips with a Single Proton Stored in a Cryogenic Penning Trap. Doktorarbeit (2011)Google Scholar
  14. 14.
    Blaum, K., Sturm, S.: Lecture: “Stored Charged Particles” (2014)Google Scholar
  15. 15.
    Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986)Google Scholar
  16. 16.
    Ketter, J., Eronen, T., Höcker, M., Streubel, S., Blaum, K.: Firstorder perturbative calculation of the frequency-shifts caused by static cylindricallysymmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass 358, 1–16 (2014)CrossRefGoogle Scholar
  17. 17.
    Köhler, F., Sturm, S., Kracke, A., Werth, G., Quint, W., Blaum, K.: The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}\)C\(^{5+}\). J. Phys. B: At. Mol. Opt. Phys. 48(14), 144032 (2015)Google Scholar
  18. 18.
    Sturm, S., Kohler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)Google Scholar
  19. 19.
    Royston, P.: Remark AS R94. Appl. Stat. 44, 547–551 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations