Advertisement

Penning Trap Physics

  • Florian Köhler-LangesEmail author
Chapter
  • 429 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Our high-precision measurements of the Larmor-to-cyclotron frequency ratios \(\varGamma \) require single trapped, cooled ions in close-to-ideal vacuum. State-of-the-art trapping and high-precision measurement techniques with stable ions will be introduced in this chapter. These techniques allow us to work with the same single ion for the complete measurement period.

Keywords

Cyclotron Frequency Larmor Frequency Axial Frequency Dipole Excitation Magnetic Field Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Earnshaw, S.: On the Nature of the Molecular Forces Which Regulate the Constitution of the Luminiferous Ether (1842)Google Scholar
  2. 2.
    Paul, W., Steinwedel, H.: Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. A (1953), vol. 8a: pp. 448–450Google Scholar
  3. 3.
    Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990)Google Scholar
  4. 4.
    Dehmelt, H.G.: The Nobel Prize in Physics (1989)Google Scholar
  5. 5.
    Penning, F.M.: Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld. Physica III 9, 873 (1936)ADSCrossRefGoogle Scholar
  6. 6.
    Pierce, J.R.: Theory and Design of Electron Beams’, ed. by Nostrand, Van. New York (1949)Google Scholar
  7. 7.
    Verdu, J.L.: Ultrapräzise Messung des elektronischen g-faktors in wasserstoffahnlichem Sauerstoff. Doktorarbeit (2003)Google Scholar
  8. 8.
    Brown, L.S., Gabrielse, G.: Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58(1), 233–311 (1986)Google Scholar
  9. 9.
    Sturm, S.: The g-factor of the electron bound in \({}^{28}{\rm Si}^{13+}\): The most stringent test of bound-state quantum electrodynamics. Doktorarbeit (2012)Google Scholar
  10. 10.
    Ketter, J., Eronen, T., Höcker, M., Streubel, S., Blaum, K.: Firstorder perturbative calculation of the frequency-shifts caused by static cylindricallysymmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass 358, 1–16 (2014)CrossRefGoogle Scholar
  11. 11.
    Brown, L.S., Gabrielse, G.: Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25(4), 2423–2425 (1986)Google Scholar
  12. 12.
    Gabrielse, G., Haarsma, L., Rolston, S.L.: Open-endcap penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Proc., 88, 319–332 (1989)Google Scholar
  13. 13.
    Ramo, S.: Currents induced by electron motion. Proc. IEEE 27(9), 584–585 (1939)Google Scholar
  14. 14.
    Stahl, S.K.-H.: Aufbau eines Experimentes zur Bestimmung elektronischer g-Faktoren einzelner wasserstoffähnlicher Ionen. Doktorarbeit (1998)Google Scholar
  15. 15.
    Johnson, J.B.: Thermal agitation of electricity in conductors. Phys. Rev. 32(1), 97–109 (1928)Google Scholar
  16. 16.
    Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)Google Scholar
  17. 17.
    Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. J. Appl. Phys. 46(2), 919–930 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    Häffner, H.: Präzisionsmessung des magnetischen Moments des Elektrons in wasserstoffähnlichem Kohlenstoff. Doktorarbeit (2000)Google Scholar
  19. 19.
    Van Dyck, R.S., Moore, F.L., Farnham, D.L., Schwinberg, P.B.: Number dependency in the compensated Penning trap. Phys. Rev. A 40(11), 6308–6313 (1989)Google Scholar
  20. 20.
    Sturm, S., Wagner, A., Kretzschmar, M.M., Quint, W., Werth, G., Blaum, K.: \(g\)-factor measurement of hydrogenlike \({}^{28}{\rm Si}^{13+}\) as a challenge to QED calculations. Phys. Rev. A 87(3), 030501 (2013)Google Scholar
  21. 21.
    Köhler, F., Sturm, S., Kracke, A., Werth, G., Quint, W., Blaum, K.: The electron mass from \(g\)-factor measurements on hydrogen-like carbon \({}^{12}{\rm C}^{5+}\)’. J. Phys. B: At. Mol. Opt. Phys. 48(14), 144032 (2015)Google Scholar
  22. 22.
    COMSOL, Multiphysics, version 4.2 a. COMSOL, IncGoogle Scholar
  23. 23.
    Sturm, S., Wagner, A., Schabinger, B., Blaum, K.: Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107(14), 143003 (2011)Google Scholar
  24. 24.
    Cornell, E.A., Weisskoff, R.M., Boyce, K.R., Pritchard, D.E.: Mode coupling in a Penning trap: \(\pi \) pulses and a classical avoided crossing. Phys. Rev. A 41(1), 312–315 (1990)Google Scholar
  25. 25.
    Kretzschmar, M.: A quantum mechanical model of Rabi oscillations between two interacting harmonic oscillator modes and the interconversion of modes in a Penning trap. AIP Conf. Proc. 457(1) (1999)Google Scholar
  26. 26.
    Ketter, J., Eronen, T., Höcker, M., Schuh, M., Streubel, S., Blaum, K.: Classical calculation of relativistic frequency-shifts in an ideal Penning trap. Int. J. Mass 361, 34–40 (2014)CrossRefGoogle Scholar
  27. 27.
    Castiglioni, P.: Zero Padding (2014)Google Scholar
  28. 28.
    Dehmelt, H.: Continuous Stern-Gerlach effect: principle and idealized apparatus 83(8), 2291–2294 (1986)Google Scholar
  29. 29.
    Wagner, A.: The g-factor of the valence electron bound in lithiumlike silicon \({}^{28}{\rm Si}^{11+}\): the most stringent test of relativistic many-electron calculations in a magnetic field. Doktorarbeit (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations