The g-Factor - Exploring Atomic Structure and Fundamental Constants

  • Florian Köhler-LangesEmail author
Part of the Springer Theses book series (Springer Theses)


Slightly more than 100 years ago Ernest Rutherford in 1911 and Niels Bohr in 1913 made the first fundamental steps to explain the atomic structure of nature (Rutherford, Philos Mag Ser 6 21(125):669–688, 1911, [1]; Bohr, Philos Mag Ser 6 26(151):1–25, 1913, [2]). Since then, enormous efforts have been undertaken, such that the SM nowadays is able to predict properties of elementary particles up to the thirteens digit (Aoyama et al. Phys Rev Lett 109(11):111807, 2012, [3]; Hanneke, et al., Phys Rev Lett 100(12):120801, 2008, [4]; Bouchendira et al., Phys Rev Lett 106(8):080801, 2011, [5]). In the following chapter I will illuminate the present understanding of the fundamental electromagnetic dynamics in atomic structure. The main focus will be set on the present workhorse of the underlying theory, the so-called bound-state quantum electrodynamics (BS-QED): the bound-electron g-factor.


Cyclotron Frequency Isotope Shift Calcium Isotope Nuclear Charge Distribution Atomic Mass Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rutherford, E.: LXXIX. The scattering of \(\alpha \) and \(\beta \) particles by matter and the structure of the atom. Philos. Mag. Ser. 6 21(125), 669–688 (1911)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bohr, N.: I. On the constitution of atoms and molecules. Philos. Mag. Ser. 6 26(151), 1–25 (1913)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Tenth-order QED contribution to the electron \(g\) - 2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109(11), 111807 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Hanneke, D., Fogwell, S., Gabrielse, G.: New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100(12), 120801 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F., Biraben, F.: New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106(8), 080801 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. German. Z. Phys. 9(1), 349–352 (1922)ADSCrossRefGoogle Scholar
  7. 7.
    Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezuglich des inneren Verhaltens jedes einzelnen Elektrons. German. Die Naturwissenschaften 13(47), 953–954 (1925)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Landé, A.: Interview of Dr. A. Lande by T.S. Kuhn and J. Heilbron in Berkeley on March 6, : Niels Bohr Library and Archives, p. 1962. MD USA, American Institute of Physics, College Park (1962)Google Scholar
  9. 9.
    Lamb, W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72(3), 241–243 (1947)ADSCrossRefGoogle Scholar
  10. 10.
    Nafe, J.E., Nelson, E.B., Rabi, I.I.: The hyperfine structure of atomic hydrogen and deuterium. Phys. Rev. 71(12), 914–915 (1947)ADSCrossRefGoogle Scholar
  11. 11.
    Nagle, D.E., Julian, R.S., Zacharias, J.R.: The hyperfine structure of atomic hydrogen and deuterium. Phys. Rev. 72(10), 971 (1947)ADSCrossRefGoogle Scholar
  12. 12.
    Kusch, P., Foley, H.M.: Precision measurement of the ratio of the atomic ‘\(g\) values’ in the \(^{2}P_{3/2}\) and \(^{2}P_{1/2}\) states of gallium. Phys. Rev. 72(12), 1256–1257 (1947)ADSCrossRefGoogle Scholar
  13. 13.
    Foley, H.M., Kusch, P.: On the intrinsic moment of the electron. Phys. Rev. 73(4), 412 (1948)ADSCrossRefGoogle Scholar
  14. 14.
    Schwinger, J.: On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73(4), 416–417 (1948)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Suslov, S.K.: Expectation values in relativistic Coulomb problems. J. Phys. B 42(18), 185003 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G., Krushelnick, K.: Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16(3), 2109–2114 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82(5), 664–679 (1951)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sauter, F.: Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. German. Z. Phys. 69(11–12), 742–764 (1931)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. German. Z. Phys. 98(11–12), 714–732 (1936)Google Scholar
  20. 20.
    Beier, T.: The \(g_{j}\) factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 39(2–3), 79–213 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Furry, W.H.: On bound states and scattering in positron theory. Phys. Rev. 81(1), 115–124 (1951)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zatorski, J., Harman, Z., Keitel, C.H.: Private communication (2015)Google Scholar
  23. 23.
    Volotka, A.V.: Private communication (2015)Google Scholar
  24. 24.
    Breit, G.: The magnetic moment of the electron. Nature 122, 649 (1928)ADSCrossRefGoogle Scholar
  25. 25.
    Quint, W., Vogel, M. (eds.): Fundamental Physics in Particle Traps. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Blundell, S.A., Cheng, K.T., Sapirstein, J.: Radiative corrections in atomic physics in the presence of perturbing potentials. Phys. Rev. A 55(3), 1857–1865 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Evaluation of the selfenergy correction to the \(g\) factor of \(S\) states in H-like ions’. Phys. Rev. A 69(5), 052503 (2004)Google Scholar
  28. 28.
    Beier, T., Lindgren, I., Persson, H., Salomonson, S., Sunnergren, P., Häffner, H., Hermanspahn, N.: \(g_{j}\) factor of an electron bound in a hydrogenlike ion. Phys. Rev. A 62(3), 032510 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Pachucki, K., Czarnecki, A., Jentschura, U.D., Yerokhin, V.A.: Complete two-loop correction to the bound-electron \(g\) factor. Phys. Rev. A 72(2), 022108 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Bohr, A., Weisskopf, V.F.: The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 77(1), 94–98 (1950)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Glazov, D.A., Shabaev, V.M.: Finite nuclear size correction to the boundelectron g factor in a hydrogenlike atom. Phys. Lett. A 297(5.6), 408–411 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Sturm, S., Wagner, A., Schabinger, B., Zatorski, J., Harman, Z., Quint, W., Werth, G., Keitel, C.H., Blaum, K.: \(g\) factor of hydrogenlike \(^{28}{\rm Si}^{13+}\). Phys. Rev. Lett. 107(2), 023002 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Zatorski, J., Oreshkina, N.S., Keitel, C.H., Harman, Z.: Nuclear shape effect on the \(g\) factor of hydrogenlike ions. Phys. Rev. Lett. 108(6), 063005 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Shabaev, V.M.: QED theory of the nuclear recoil effect on the atomic \(g\) factor. Phys. Rev. A 64, 052104 (2001)Google Scholar
  35. 35.
    Nefiodov, A.V., Plunien, G., Soff, G.: Nuclear-polarization correction to the bound-electron \(g\) factor in heavy hydrogenlike ions. Phys. Rev. Lett. 89(8), 081802 (2002)Google Scholar
  36. 36.
    Volotka, A.V., Plunien, G.: Nuclear polarization study: new frontiers for tests of qed in heavy highly charged ions. Phys. Rev. Lett. 113(2), 023002 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Shabaev, V.M., Glazov, D.A., Shabaeva, M.B., Yerokhin, V.A., Plunien, G., Soff, G.: \(g\) factor of high-Z lithiumlike ions. Phys. Rev. A 65(6), 062104 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Volotka, A.V., Glazov, D.A., Shabaev, V.M., Tupitsyn, I.I., Plunien, G.: Many-electron QED corrections to the \(g\) factor of lithiumlike ions. Phys. Rev. Lett. 112(25), 253004 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    von Lindenfels, D., Wiesel, M., Glazov, D.A., Volotka, A.V., Sokolov, M.M., Shabaev, V.M., Plunien, G., Quint, W., Birkl, G., Martin, A., Vogel, M.: Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87(2), 023412 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Glazov, D.A.: Private communication (2015)Google Scholar
  41. 41.
    Häffner, H., Beier, T., Hermanspahn, N., Kluge, H.-J., Quint, W., Stahl, S., Verdú, J., Werth, G.: High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85(25), 5308–5311 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    Verdú, J., Djekić, S., Stahl, S., Valenzuela, T., Vogel, M., Werth, G., Beier, T., Kluge, H.-J., Quint, W.: Electronic \(g\) factor of hydrogenlike oxygen \(^{16}{\rm O}^{7+}\). Phys. Rev. Lett. 92(9), 093002 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Schabinger, B., Sturm, S., Wagner, A., Alonso, J., Quint, W., Werth, G., Blaum, K.: Experimental g factor of hydrogenlike silicon-28. English EPJ D 66(3), 71 (2012)Google Scholar
  44. 44.
    Sturm, S., Wagner, A., Schabinger, B., Blaum, K.: Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107(14), 143003 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Wagner, A., Sturm, S., Köhler, F., Glazov, D.A., Volotka, A.V., Plunien, G., Quint, W., Werth, G., Shabaev, V.M., Blaum, K.: \(g\) factor of lithiumlike silicon \(^{28}{\rm Si}^{11+}\). Phys. Rev. Lett. 110(3), 033003 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Thomson, J.J.: XL. Cathode rays. Philos. Mag. Ser. 5 44(269), 293–316 (1897)CrossRefGoogle Scholar
  47. 47.
    Thomson, J.J.: Nobel Lecture: Carriers of Negative Electricity. Nobel Media AB 2014. Web. 6 Feb 2015 (1906)
  48. 48.
    Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M., Odom, B.: New determination of the fine structure constant from the electron \(g\) value and QED. Phys. Rev. Lett. 97(3), 030802 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    Pospelov, M., Ritz, A.: Electric dipole moments as probes of new physics. Ann. Phys. 318(1), 119–169 (2005). Special IssueGoogle Scholar
  50. 50.
    The ACME Collaboration et al.: Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343(6168), 269–272 (2014)Google Scholar
  51. 51.
    Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84(4), 1527–1605 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Mount, B.J., Redshaw, M., Myers, E.G.: Atomic masses of \(^{6}{\rm Li}\), \(^{23}{\rm Na}\), \(^{39,41}{\rm K}\), \(^{85,87}{\rm Rb}\) and \(^{133}{\rm Cs}\). Phys. Rev. A 82(4), 042513 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    Bennett, G.W., et al.: Final report of the E821 muon anomalous magnetic moment measurement at BNL’. Phys. Rev. D 73(7), 072003 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    Davier, M., Hoecker, A., Malaescu, B., Zhang, Z.: Reevaluation of the hadronic contributions to the muon \(g\)-2 and to \(\alpha (M_{Z}^{2})\). Eur. Phys. J. C 71(1), 1515 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Gärtner, G., Klempt, E.: A direct determination of the proton-electron mass ratio. English Z. Phys. A 287(1), 1–6 (1978)ADSCrossRefGoogle Scholar
  56. 56.
    Gräff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. English Z. Phys. A 297(1), 35–39 (1980)ADSCrossRefGoogle Scholar
  57. 57.
    Van Dyck, R.S., Schwinberg, P.B.: Preliminary proton/electron mass ratio using a compensated quadring penning trap. Phys. Rev. Lett. 47(6), 395–398 (1981)ADSCrossRefGoogle Scholar
  58. 58.
    Van Dyck, R.S., Moore, F.L., Farnham, D.L., Schwinberg, P.B.: New measurement of the proton-electron mass ratio. Int. J. Mass Spectrom. Ion Proc. 66(3), 327–337 (1985)ADSCrossRefGoogle Scholar
  59. 59.
    Farnham, D.L., Van Dyck, R.S., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via penning trap mass spectroscopy. Phys. Rev. Lett. 75(20), 3598–3601 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    Wineland, D.J., Bollinger, J.J., Itano, W.M.: Laser-fluorescence mass spectroscopy. Phys. Rev. Lett. 50(9), 628–631 (1983)ADSCrossRefGoogle Scholar
  61. 61.
    Gabrielse, G., Fei, X., Orozco, L.A., Tjoelker, R.L., Haas, J., Kalinowsky, H., Trainor, T.A., Kells, W.: Thousandfold improvement in the measured antiproton mass. Phys. Rev. Lett. 65(11), 1317–1320 (1990)ADSCrossRefGoogle Scholar
  62. 62.
    Hori, M., Sótér, A., Barna, D., Dax, A., Hayano, R., Friedreich, S., Juhasz, B., Pask, T., Widmann, E., Horvath, D., Venturelli, L., Zurlo, N.: Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 474, 484–488 (2011)CrossRefGoogle Scholar
  63. 63.
    Sturm, S., Köhler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)Google Scholar
  64. 64.
    Cohen, E.R., Taylor, B.N.: The 1973 least-squares adjustment of the fundamental constants. J. Phys. Chem. Ref. Data 2(4), 663–734 (1973)Google Scholar
  65. 65.
    Cohen, E.R., Taylor, B.N.: The 1986 CODATA recommended values of the fundamental physical constants. J. Phys. Chem. Ref. Data 17(4), 1795–1803 (1988)ADSCrossRefGoogle Scholar
  66. 66.
    Mohr, P.J., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 1998. Rev. Mod. Phys. 72(2), 351–495 (2000)ADSzbMATHCrossRefGoogle Scholar
  67. 67.
    Mohr, P.J., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 2002*. Rev. Mod. Phys. 77(1), 1–107 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006*. Rev. Mod. Phys. 80(2), 633–730 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    Beier, T., Häffner, H., Hermanspahn, N., Karshenboim, S.G., Kluge, H.-J., Quint, W., Stahl, S., Verdú, J., Werth, G.: New determination of the electron’s mass. Phys. Rev. Lett. 88(1), 011603 (2001)ADSCrossRefGoogle Scholar
  70. 70.
    Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team: NIST Atomic Spectra Database (ver. 5.2). [26 January 2015]. National Institute of Standards and Technology, Gaithersburg, MD. (2014)
  71. 71.
    Moore, C.E.: Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions. CRC Press, Boca Raton (1993)Google Scholar
  72. 72.
    Biémont, E., Frémat, Y., Quinet, P.: Ionization potentials of atoms and ions from lithium to tin (Z=50). At. Data Nuclear Data Tables 71(1), 117–146 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    Ölme, A.: The spectrum of singly ionized boron B II. Physica Scripta 1(5–6), 256 (1970)ADSCrossRefGoogle Scholar
  74. 74.
    Tunklev, M., Engström, L., Jupén, C., Kink, I.: The spectrum and term system of C IV. Phys. Scripta 55(6), 707 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    Drake, G.W.F.: Theoretical energies for the n=1 and 2 states of the helium isoelectronic sequence up to Z=100. Can. J. Phys. 66, 586–611 (1988)ADSCrossRefGoogle Scholar
  76. 76.
    Klopper, W., Bachorz, R.A., Tew, D.P., Hattig, C.: Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne. Phys. Rev. A 81(2), 022503 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Pálffy, A.: Nuclear effects in atomic transitions. Contemp. Phys. 51(6), 471–496 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Orts, Soria, Harman, Z., Crespo Lopez-Urrutia, J.R., Artemyev, A.N., Bruhns, H., Gonzalez Martinez, A.J., Jentschura, U.D., Keitel, C.H., Lapierre, A., Mironov, V., Shabaev, V.M., Tawara, H., Tupitsyn, I.I., Ullrich, J., Volotka, A.V.: Exploring relativistic many-body recoil effects in highly charged ions. Phys. Rev. Lett. 97(10), 103002 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    Hughes, W.M., Robinson, H.G.: Determination of an isotope shift in the ratio of atomic \(g_{j}\) values of hydrogen and deuterium. Phys. Rev. Lett. 23(21), 1209–1212 (1969)ADSCrossRefGoogle Scholar
  80. 80.
    Angeli, I., Marinova, K.P.: Table of experimental nuclear ground state charge radii: an update. At. Data Nuclear Tables 99(1), 69–95 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Köhler, F., et al.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)Google Scholar
  82. 82.
    Grotch, H., Hegstrom, R.A.: Hydrogenic atoms in a magnetic field. Phys. Rev. A 4(1), 59–69 (1971)ADSCrossRefGoogle Scholar
  83. 83.
    Close, F.E., Osborn, H.: Relativistic extension of the electromagnetic current for composite systems. Phys. Lett. B 34(5), 400–404 (1971)ADSCrossRefGoogle Scholar
  84. 84.
    Pachucki, K.: Nuclear mass correction to the magnetic interaction of atomic systems. Phys. Rev. A 78(1), 012504 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    Eides, M.I., Martin, T.J.S.: Universal binding and recoil corrections to bound state \(g\) factors in hydrogenlike ions. Phys. Rev. Lett. 105(10), 100402 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    Zong-Chao, Y.: Calculations of magnetic moments for lithium-like ions. J. Phys. B 35(8), 1885 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    Block, M., et al.: Towards direct mass measurements of nobelium at SHIPTRAP. English EPJ D 45(1), 39–45 (2007)Google Scholar
  88. 88.
    Chaudhuri, A., Block, M., Eliseev, S., Ferrer, R., Herfurth, F., Martin, A., Marx, G., Mukherjee, M., Rauth, C., Schweikhard, L., Vorobjev, G.: Carbon-cluster mass calibration at SHIPTRAP. English. EPJ D 45(1), 47–53 (2007)Google Scholar
  89. 89.
    Savard, G., Becker, St., Bollen, G., Kluge, H.-J., Moore, R.B., Otto, Th., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap’. Phys. Lett. A 158(5), 247–252 (1991)Google Scholar
  90. 90.
    Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu.N., Schweikhard, L.: Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110(8), 082501 (2013)Google Scholar
  91. 91.
    Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu.N., Schweikhard, L.: A phase-imaging technique for cyclotronfrequency measurements. English Appl. Phys. B 114(1–2), 107–128 (2014)Google Scholar
  92. 92.
    Yurtsever, E., Elmaci, N.: Dissociation dynamics of small carbon clusters. English Tr. J. Chem. 21, 35–41 (1997)Google Scholar
  93. 93.
    Belau, L., Wheeler, S.E., Ticknor, B.W., Ahmed, M., Leone, S.R., Allen, W.D., Schaefer, H.F., Duncan, M.A.: Ionization thresholds of small carbon clusters: tunable VUV experiments and theory. J. Am. Chem. Soc. 129(33), 10229–10243 (2007)CrossRefGoogle Scholar
  94. 94.
    Beyer, H.F., Menzel, G., Liesen, D., Gallus, A., Bosch, F., Deslattes, R., Indelicato, P., Stöhlker, Th., Klepper, O., Moshammer, R., Nolden, F., Eickhoff, H., Franzke, B., Steck, M.: Measurement of the ground-state lambshift of hydrogenlike uranium at the electron cooler of the ESR. English Z. Phys. D 35(3), 169–175 (1995)Google Scholar
  95. 95.
    Nagy, Sz., Fritioff, T., Solders, A., Schuch, R., Bjorkhage, M., Bergström, I.: Precision mass measurements of \(^{40}{\rm Ca}^{17+}\) and \(^{40}{\rm Ca}^{19+}\) ions in a Penning trap. English. EPJ D 39(1), 1–4 (2006)Google Scholar
  96. 96.
    Audi, G., Wang, M., Wapstra, A.H., Kondev, F.G., MacCormick, M., Xu, X., Pfeiffer, B.: The Ame 2012 atomic mass evaluation’. Chin. Phys. C 36(12), 1603 (2012)CrossRefGoogle Scholar
  97. 97.
    Rodrigues, G.C., Indelicato, P., Santos, J.P., Patté, P., Parente, F.: Systematic calculation of total atomic energies of ground state configurations. At. Data Nuclear Data Tables 86(2), 117–233 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations