Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 497 Accesses

Abstract

Today, the most fundamental models to describe the physical structure and dynamics of nature are based on quantum field theories. The collection of three quantum field theories: (1) quantum electrodynamics (QED), describing the electromagnetic interaction, (2) quantum flavordynamics (QFD), describing the weak interaction and (3) quantum chromodynamics (QCD), describing the strong interaction, are called the Standard Model (SM) of particle physics. The elementary assumption of local gauge invariance of these quantum field theories stimulated the development of the so-called Higgs mechanism in the 1960s, which explains the generation of all particle masses via spontaneous symmetry breaking [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 19 input parameters of the SM include the particle masses for the electron, muon, tau and the six quarks, the three CKM mixing angles, the CKM cp-violating phase, the gauge coupling constants of the electric, the weak and the strong force, the QCD vacuum angle, the Higgs vacuum expectation value and the Higgs mass.

References

  1. Higgs, P.W.: Broken symmetries, massless particles and gauge fields. Phys. Lett. 12(2), 132–133 (1964)

    Google Scholar 

  2. Englert, F., Brout, R.: ‘Broken symmetry and the mass of gauge vector mesons’. Phys. Rev. Lett. 13(9), 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  3. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: ‘Global conservation laws and massless particles’. Phys. Rev. Lett. 13(20), 585–587 (1964)

    Article  ADS  Google Scholar 

  4. Ellis, J., You, T.: Updated global analysis of higgs couplings. JHEP 1306, 103 (2013)

    Article  ADS  Google Scholar 

  5. Peter, A.H.G.: Dark Matter: A Brief Review. arXiv:1201.3942. (2012)

  6. Peebles, P.J.E., Ratra, B.: The Cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fukuda, Y., et al.: ‘Evidence for oscillation of atmospheric neutrinos’. Phys. Rev. Lett. 81(8), 1562–1567 (1998)

    Article  ADS  Google Scholar 

  8. Ahmad, Q.R., et al.: ‘Measurement of the rate of \(v_{e}+d\rightarrow p+p+e^{-}\) interactions produced by \(^8{B}\) solar neutrinos at the sudbury neutrino observatory’. Phys. Rev. Lett. 87(7), 071301 (2001)

    Article  ADS  Google Scholar 

  9. Ellis, J.R.: Limits of the standard model. arXiv:hep-ph/0211168. (2002)

  10. The ATLAS Collaboration: ‘The ATLAS experiment at the CERN large hadron collider’. J. Instrum. 3(08), S08003 (2008)

    Google Scholar 

  11. The CMS Collaboration: ‘CMS physics technical design report, volume II: physics performance’. J. Phys. G 34(6), 995 (2007)

    Google Scholar 

  12. Tomonaga, S.-I., Schwinger, J., Feynman, R.P.: Nobel Prize in Physics 1965 - Presentation Speech. (1965)

    Google Scholar 

  13. Sturm, S.: The g-factor of the electron bound in \(^{28}{\rm Si}^{13+}:\) The most stringent test of bound-state quantum electrodynamics. Doktorarbeit. (2012)

    Google Scholar 

  14. Wagner, A.: The g-factor of the valence electron bound in lithiumlike silicon \(^{28}{\rm Si}^{11+}:\) The most stringent test of relativistic many-electron calculations in a magnetic field. Doktorarbeit. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Köhler-Langes .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Köhler-Langes, F. (2017). Introduction. In: The Electron Mass and Calcium Isotope Shifts. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-50877-1_1

Download citation

Publish with us

Policies and ethics