Advertisement

Introduction

  • Florian Köhler-LangesEmail author
Chapter
  • 394 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Today, the most fundamental models to describe the physical structure and dynamics of nature are based on quantum field theories. The collection of three quantum field theories: (1) quantum electrodynamics (QED), describing the electromagnetic interaction, (2) quantum flavordynamics (QFD), describing the weak interaction and (3) quantum chromodynamics (QCD), describing the strong interaction, are called the Standard Model (SM) of particle physics. The elementary assumption of local gauge invariance of these quantum field theories stimulated the development of the so-called Higgs mechanism in the 1960s, which explains the generation of all particle masses via spontaneous symmetry breaking [1, 2, 3].

Keywords

Quantum Flavordynamics (QFD) Local Gauge Invariance Elementary Assumptions Quantum Chromodynamics (QCD) Quantum Electrodynamics (QED) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Higgs, P.W.: Broken symmetries, massless particles and gauge fields. Phys. Lett. 12(2), 132–133 (1964)Google Scholar
  2. 2.
    Englert, F., Brout, R.: ‘Broken symmetry and the mass of gauge vector mesons’. Phys. Rev. Lett. 13(9), 321–323 (1964)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: ‘Global conservation laws and massless particles’. Phys. Rev. Lett. 13(20), 585–587 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    Ellis, J., You, T.: Updated global analysis of higgs couplings. JHEP 1306, 103 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Peter, A.H.G.: Dark Matter: A Brief Review. arXiv:1201.3942. (2012)
  6. 6.
    Peebles, P.J.E., Ratra, B.: The Cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fukuda, Y., et al.: ‘Evidence for oscillation of atmospheric neutrinos’. Phys. Rev. Lett. 81(8), 1562–1567 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Ahmad, Q.R., et al.: ‘Measurement of the rate of \(v_{e}+d\rightarrow p+p+e^{-}\) interactions produced by \(^8{B}\) solar neutrinos at the sudbury neutrino observatory’. Phys. Rev. Lett. 87(7), 071301 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Ellis, J.R.: Limits of the standard model. arXiv:hep-ph/0211168. (2002)
  10. 10.
    The ATLAS Collaboration: ‘The ATLAS experiment at the CERN large hadron collider’. J. Instrum. 3(08), S08003 (2008)Google Scholar
  11. 11.
    The CMS Collaboration: ‘CMS physics technical design report, volume II: physics performance’. J. Phys. G 34(6), 995 (2007)Google Scholar
  12. 12.
    Tomonaga, S.-I., Schwinger, J., Feynman, R.P.: Nobel Prize in Physics 1965 - Presentation Speech. (1965)Google Scholar
  13. 13.
    Sturm, S.: The g-factor of the electron bound in \(^{28}{\rm Si}^{13+}:\) The most stringent test of bound-state quantum electrodynamics. Doktorarbeit. (2012)Google Scholar
  14. 14.
    Wagner, A.: The g-factor of the valence electron bound in lithiumlike silicon \(^{28}{\rm Si}^{11+}:\) The most stringent test of relativistic many-electron calculations in a magnetic field. Doktorarbeit. (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Stored and Cooled IonsMax-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations