Advertisement

Modeling PDEs in Domains with Rough Boundaries

  • Alexandre L. Madureira
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

We discuss here PDEs defined in domains where at least part of the boundary is rugous. The fully discretization of such domains can be very expensive, and we show two ways to decrease such burden. When the wrinkles are periodic, one way is to avoid the expensive discretization of the rough domain altogether, replacing the rough domain by a smooth one and changing the boundary conditions in such a way that the geometry of the wrinkles is captured. For a general domain, a possibility is to use a domain decomposition approach, solving local problems in parallel in the spirit of the Multiscale Finite Element Method. Asymptotic expansions play a key role in both alternatives, motivating the development of models, and helping in deriving error estimates.

Keywords

Finite Element Method Asymptotic Expansion Multiscale Method Cell Problem Rough Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abboud, T., & Ammari, H. (1996). Diffraction at a curved grating: Approximation by an infinite plane grating. Journal of Mathematical Analysis and Applications, 202(3), 1076–1100. MR1408368 (98b:78028).Google Scholar
  2. 6.
    Achdou, Y., Pironneau, O., & Valentin, F. (1998). Effective boundary conditions for laminar flows over periodic rough boundaries. Journal of Computational Physics, 147(1), 187–218. MR1657773 (99j:76086).Google Scholar
  3. 9.
    Allaire G., & Amar, M. (1999). Boundary layer tails in periodic homogenization. ESAIM Control Optimization and Calculus of Variations, 4, 209–243 (electronic) (English, with English and French summaries). MR1696289 (2000k:35019).Google Scholar
  4. 10.
    Amirat, Y., & Bodart, O. (2004). Numerical approximation of laminar flows over rough walls with sharp asperities. Journal of Computational and Applied Mathematics, 164/165, 25–38. MR2056866 (2004m:76118).zbMATHGoogle Scholar
  5. 12.
    Amirat, Y., Climent, B., Fernández-Cara, E., & Simon, J. (2001). The Stokes equations with Fourier boundary conditions on a wall with asperities. Mathematical Methods in the Applied Science, 24(5), 255–276. MR1818895 (2002b:76042).Google Scholar
  6. 24.
    Babuška, I., Caloz, G., & Osborn, J. E. (1994). Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM Journal of Numerical Analysis, 31(4), 945–981. MR1286212 (95g:65146).Google Scholar
  7. 29.
    Barrenechea, G. R., Le Tallec, P., & Valentin, F. (2002). New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains. Mathematical Modelling and Numerical Analysis, 36(2), 177–203. MR1906814 (2003k:76104).Google Scholar
  8. 30.
    Basson, A., & Gérard-Varet, D. (2008). Wall laws for fluid flows at a boundary with random roughness. Communications on Pure and Applied Mathematics, 61(7), 941–987. doi:10.1002/cpa.20237. MR2410410.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 35.
    Bresch, D., & Milisic, V. (2006, November 6). Higher order boundary layer corrector and wall laws derivation: A unified approach. arXiv:math.AP/0611083v1.Google Scholar
  10. 49.
    Chechkin, G. A., Piatnitski, A. L., & Shamaev, A. S. (2007). Homogenization: Methods and applications. Translations of Mathematical Monographs (Vol. 234). Providence, RI: American Mathematical Society. Translated from the 2007 Russian original by Tamara Rozhkovskaya. MR2337848.Google Scholar
  11. 50.
    Chen, C. (1995). Asymptotic convergence rates for the Kirchhoff plate model. Ph.D. Thesis, The Pennsylvania State University.Google Scholar
  12. 52.
    Ciarlet, P. G. (1997). Mathematical elasticity: Vol. II. Theory of plates. Studies in Mathematics and Its Applications (Vol. 27). Amsterdam: North-Holland Publishing Co. MR1477663 (99e:73001).Google Scholar
  13. 53.
    Ciarlet, P. G. (2000). Mathematical elasticity: Vol. III. Theory of shells. Studies in Mathematics and Its Applications (Vol. 29). North-Holland Publishing Co., Amsterdam. MR1757535.Google Scholar
  14. 54.
    Ciarlet, P. G. (2002). The finite element method for elliptic problems. Classics in Applied Mathematics (Vol. 40). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. MR1930132.Google Scholar
  15. 56.
    Cioranescu, D., & Donato, P. (1999). An introduction to homogenization. Oxford Lecture Series in Mathematics and Its Applications (Vol. 17). New York: The Clarendon Press/Oxford University Press. MR1765047 (2001j:35019).Google Scholar
  16. 57.
    Cioranescu, D., & Jean Paulin, J. St. (1999). Homogenization of reticulated structures. Applied Mathematical Sciences (Vol. 136). New York: Springer. MR1676922.Google Scholar
  17. 63.
    Dauge, M., & Gruais, I. (1996). Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error estimates. Asymptotic Analysis, 13(2), 167–197. MR1413859 (98b:73022).Google Scholar
  18. 64.
    Dauge, M., & Gruais, I. (1998). Asymptotics of arbitrary order for a thin elastic clamped plate, II: Analysis of the boundary layer terms. Asymptotic Analysis, 16(2), 99–124. MR1612135.Google Scholar
  19. 78.
    Efendiev, Y. R., Hou, T. Y., & Wu, X.-H. (2000). Convergence of a nonconforming multiscale finite element method. SIAM Journal of Numerical Analysis, 37(3), 888–910 (electronic). MR1740386 (2002a:65176).Google Scholar
  20. 80.
    Efendiev, Y., & Pankov, A. (2003). Numerical homogenization of monotone elliptic operators. Multiscale Modelling and Simulation, 2(1), 62–79 (electronic). MR2044957 (2005a:65153).Google Scholar
  21. 83.
    Elfverson, D., Larson, M. G., & Maålqvist, A. (2015). Multiscale methods for problems with complex geometry. arXiv:1509.03991 [math.NA].Google Scholar
  22. 127.
    Hou, T. Y. (2003). Numerical approximations to multiscale solutions in partial differential equations. In Frontiers in numerical analysis (Durham, 2002) (pp. 241–301). MR2006969 (2004m:65219).Google Scholar
  23. 129.
    Hou, T. Y., & Wu, X.-H. (1997). A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 134(1), 169–189. MR1455261 (98e:73132).Google Scholar
  24. 130.
    Hou, T. Y., Wu, X.-H., & Cai, Z. (1999). Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation, 68(227), 913–943. MR1642758 (99i:65126).Google Scholar
  25. 131.
    Hou, T. Y., Wu, X.-H., & Zhang, Y. (2004). Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Communications in Mathematical Science, 2(2), 185–205. MR2119937.Google Scholar
  26. 138.
    Il\( ^{{\prime}} \) in, A. M. (1992). Matching of asymptotic expansions of solutions of boundary value problems. Translations of Mathematical Monographs (Vol. 102). Providence, RI: American Mathematical Society. Translated from the Russian by V. Minachin [V. V. Minakhin]. MR1182791.Google Scholar
  27. 142.
    Kozlov, V., Maz’ya, V., & Movchan, A. (1999). Asymptotic analysis of fields in multi-structures. Oxford Mathematical Monographs. New York: The Clarendon Press, Oxford University Press. Oxford Science Publications. MR1860617.Google Scholar
  28. 149.
    Madureira, A. L. (2009). A multiscale finite element method for partial differential equations posed in domains with rough boundaries. Mathematics of Computation, 78(265), 25–34. MR2448695.Google Scholar
  29. 152.
    Madureira, A., & Valentin, F. (2002). Analysis of curvature influence on effective boundary conditions. Comptes Rendus de L’Academie des Sciences Paris, 335(5), 499–504 (English, with English and French summaries). MR1937121 (2003j:35054).Google Scholar
  30. 153.
    Madureira, A. L., & Valentin, F. (2006/2007). Asymptotics of the Poisson problem in do mains with curved rough boundaries. SIAM Journal of Mathematical Analysis, 38(5), 1450–1473 (electronic). MR2286014.Google Scholar
  31. 160.
    Ming, P., & Xu, X. (2016). A multiscale finite element method for oscillating Neumann problem on rough domain. Multiscale Modeling and Simulation, 14(4), 1276–1300. ISSN:1540-3459; doi:10.1137/15M1044709. MR3554877.Google Scholar
  32. 164.
    Nicaise, S., & Sauter, S. A. (2006) Efficient numerical solution of Neumann problems on complicated domains. Calcolo, 43(2), 95–120. MR2245226 (2007c:65108).Google Scholar
  33. 165.
    Novotny, A. A., & Sokołowski, J. (2013). Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Heidelberg: Springer. MR3013681.Google Scholar
  34. 168.
    Peterseim, D., & Sauter, S. A. (2011). Finite element methods for the Stokes problem on complicated domains. Computational Methods in Applied Mechanical Engineering, 200 (33–36), 2611–2623. doi:10.1016/j.cma.2011.04.017. MR2812028.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 174.
    Rech, M., Sauter, S., & Smolianski, A. (2006). Two-scale composite finite element method for Dirichlet problems on complicated domains. Numerical Mathematics, 102(4), 681–708. MR2207285 (2006m:65283).Google Scholar
  36. 179.
    Roos, H.-G., Stynes, M., & Tobiska, L. (2008). Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems. Springer Series in Computational Mathematics (2nd ed., Vol. 24). Berlin: Springer. MR2454024 (2009f:65002).Google Scholar
  37. 181.
    Sangalli, G. (2003). Capturing small scales in elliptic problems using a residual-free bubbles finite element method. Multiscale Modelling and Simulation, 1(3), 485–503 (electronic). MR2030161 (2004m:65202).Google Scholar
  38. 193.
    Weinan E, & Engquist, B. (2003). Multiscale modeling and computation. Notices of the American Mathematical Society, 50(9), 1062–1070. MR2002752 (2004m:65163).Google Scholar
  39. 194.
    Weinan E, & Engquist, B. (2003). The heterogeneous multiscale methods. Communications in Mathematical Science, 1(1), 87–132. MR1979846 (2004b:35019).Google Scholar
  40. 198.
    Weinan E, & Ming, P. (2004). Analysis of multiscale methods. Journal of Computational Mathematics, 22(2), 210–219. MR2058933 (2005d:65188).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Alexandre L. Madureira
    • 1
    • 2
  1. 1.Laboratório Nacional de Computação Científica-LNCCPetrópolisBrazil
  2. 2.Fundação Getúlio Vargas-FGVRio de JaneiroBrazil

Personalised recommendations