Advertisement

Two-Dimensional Reaction-Diffusion Equations

  • Alexandre L. Madureira
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

We now investigate two-dimensional domains, and consider a reaction-diffusion problem. We first develop an asymptotic expansion for the solution, and this time we show how to deal with the boundary layer in a two-dimensional problem, assuming that the boundary is smooth. We then derive an estimate for non-smooth domains. Finally, we present a numerical scheme that is a variation of the Residual Free Bubble method that works well for the problem under consideration.

Keywords

Asymptotic Expansion Local Problem Finite Element Space Boundary Corrector Galerkin Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    Alessandrini, S. M., Arnold, D. N., Falk, R. S., & Madureira, A. L. (1999). Derivation and justification of plate models by variational methods. In Plates and shells (Québec, QC, 1996). CRM Proceedings of Lecture Notes (Vol. 21, pp. 1–20). Providence, RI: American Mathematical Society. MR1696513 (2000j:74055).Google Scholar
  2. 14.
    Araya, R., Barrenechea, G. R., Franca, L. P., & Valentin, F. (2009). Stabilization arising from PGEM: A review and further developments. Applied Numerical Mathematics, 59(9), 2065–2081. doi:10.1016/j.apnum.2008.12.004. MR2532854.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 19.
    Arnold, D. N., & Falk, R. S. (1996). Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM Journal of Mathematical Analysis, 27(2), 486–514. MR1377485 (97i:73064).Google Scholar
  4. 28.
    Baiocchi, C., Brezzi, F., & Franca, L. P. (1993). Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Computational Methods in Applied Mechanical Engineering, 105(1), 125–141. doi:10.1016/0045-7825(93)90119-I. MR1222297 (94g:65058).Google Scholar
  5. 39.
    Brezzi, F., Bristeau, M. O., Franca, L. P., Mallet, M., & Rogé, G. (1992). A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Computational Methods in Applied Mechanical Engineering, 96(1), 117–129. doi:10.1016/0045-7825(92)90102-P. MR1159592 (92k:76056).Google Scholar
  6. 40.
    Brezzi, F., Franca, L. P., Hughes, T. J. R., & Russo, A. (1997). \(b =\int g\), Computational Methods in Applied Mechanical Engineering, 145(3–4), 329–339. doi:10.1016/S0045-7825(96)01221-2. MR1456019 (98g:65086).Google Scholar
  7. 41.
    Brezzi, F., Franca, L. P., Hughes, T. J. R., & Russo, A. (1997). Stabilization techniques and subgrid scales capturing. The State of the Art in Numerical Analysis (York, 1996), Institute of Mathematics and Its Applications Conference Series (Vol. 63, pp. 391–406). New York: Oxford University Press. MR1628354 (99f:65162).Google Scholar
  8. 42.
    Brezzi, F., Franca, L. P., & Russo, A. (1998). Further considerations on residual-free bubbles for advective-diffusive equations. Computational Methods in Applied Mechanical Engineering, 166(1–2), 25–33. doi:10.1016/S0045-7825(98)00080-2. MR1660137 (99j:65197).Google Scholar
  9. 50.
    Chen, C. (1995). Asymptotic convergence rates for the Kirchhoff plate model. Ph.D. Thesis, The Pennsylvania State University.Google Scholar
  10. 64.
    Dauge, M., & Gruais, I. (1998). Asymptotics of arbitrary order for a thin elastic clamped plate, II: Analysis of the boundary layer terms. Asymptotic Analysis, 16(2), 99–124. MR1612135.Google Scholar
  11. 70.
    do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice-Hall, Inc. Translated from the Portuguese. MR0394451 (52#15253).Google Scholar
  12. 72.
    Dziuk, G., & Elliott, C. (2013). Finite element methods for surface PDEs. Acta Numerica, 22, 289–396. MR3038698.Google Scholar
  13. 78.
    Efendiev, Y. R., Hou, T. Y., & Wu, X.-H. (2000). Convergence of a nonconforming multiscale finite element method. SIAM Journal of Numerical Analysis, 37(3), 888–910 (electronic). MR1740386 (2002a:65176).Google Scholar
  14. 89.
    Franca, L. P. & Dutra do Carmo, E. G. (1989). The Galerkin gradient least-squares method. Computational Methods in Applied Mechanical Engineering, 74(1), 41–54. doi:10.1016/0045-7825(89)90085-6. MR1017749 (90i:65195).Google Scholar
  15. 94.
    Franca, L. P., Madureira, A. L., Tobiska, L., & Valentin, F. (2005). Convergence analysis of a multiscale finite element method for singularly perturbed problems. Multiscale Modelling and Simulation, 4(3), 839–866 (electronic). MR2203943 (2006k:65316).Google Scholar
  16. 95.
    Franca, L. P., Madureira, A. L., & Valentin, F. (2005).Towards multiscale functions: Enriching finite element spaces with local but not bubble-like functions. Computational Methods in Applied Mechanical Engineering, 194(27–29), 3006–3021. MR2142535 (2006a:65159).Google Scholar
  17. 97.
    Franca, L. P., Ramalho, J. V. A., & Valentin, F. (2005). Multiscale and residual-free bubble functions for reaction advection-diffusion problems. International Journal for Multiscale Engineering, 3, 297–312.CrossRefGoogle Scholar
  18. 100.
    Franca, L. P., & Russo, A. (1996). Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Applied Mathematics Letters, 9(5), 83–88. MR1415477 (97e:65121).Google Scholar
  19. 102.
    Franca, L. P., & Russo, A. (1997). Mass lumping emanating from residual-free bubbles. Computational Methods in Applied Mechanical Engineering, 142(3–4), 353–360. MR1442384 (98c:76064).Google Scholar
  20. 127.
    Hou, T. Y. (2003). Numerical approximations to multiscale solutions in partial differential equations. In Frontiers in numerical analysis (Durham, 2002) (pp. 241–301). MR2006969 (2004m:65219).Google Scholar
  21. 129.
    Hou, T. Y., & Wu, X.-H. (1997). A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 134(1), 169–189. MR1455261 (98e:73132).Google Scholar
  22. 130.
    Hou, T. Y., Wu, X.-H., & Cai, Z. (1999). Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation, 68(227), 913–943. MR1642758 (99i:65126).Google Scholar
  23. 140.
    Kellogg, R. B. (1992). Notes on piecewise smooth elliptic boundary value problems. College Park, MD: Institute for Physical Science and Technology.Google Scholar
  24. 143.
    Kozlov, V. A., Maz\(^{{\prime}}\) a, V. G., & Rossmann, J. (1997). Elliptic boundary value problems in domains with point singularities. Mathematical Surveys and Monographs (Vol. 52). Providence, RI: American Mathematical Society. MR1469972.Google Scholar
  25. 191.
    Walker, S. W. (2015). The shapes of things: A Practical guide to differential geometry and the shape derivative. Advances in design and control (Vol. 28). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Alexandre L. Madureira
    • 1
    • 2
  1. 1.Laboratório Nacional de Computação Científica-LNCCPetrópolisBrazil
  2. 2.Fundação Getúlio Vargas-FGVRio de JaneiroBrazil

Personalised recommendations