Designing Workflows for the Reproducible Analysis of Electrophysiological Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10087)


The workflows that cover the experimental recording of neuronal data up to the publication of figures that illustrate neuroscientific analysis results are interwoven and complex. Unfortunately, current implementations of such workflows of electrophysiological research are far from being automatized, and software supporting such a goal is largely in development or missing. In consequence, the level of reproducibility of data analysis is poor compared to other scientific disciplines. Although the problem is well-known and leads to ineffective, unsustainable science, there is no solution in sight in terms of a complete, provenance-tracked workflow. Here, we outline principle challenges that complicate the design of workflows for electrophysiological research. We detail how existing tools can be integrated to form partial workflows which address some of the challenges. On the basis of a concrete workflow implementation we discuss open questions and urgently needed software components.


Workflow Electrophysiology Metadata Data analysis Data storage Reproducibility 



This work was supported by the Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain (SMHB), EU grant 604102 (Human Brain Project, HBP) and FP7-ICT-2009-6 (BrainScales), Priority Program 1665 of the DFG (DE 2175/1-1 and GR 1753/4-1).


  1. 1.
    Abeles, M.: Corticons: Neural Circuits of the Cerebral Cortex. Cambridge Univ Press, New York (1991)CrossRefGoogle Scholar
  2. 2.
    Abeles, M., Goldstein Jr., M.H.: Multispike train analysis. Proc. IEEE 65(5), 762–773 (1977)CrossRefGoogle Scholar
  3. 3.
    Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A.D.: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283), 1868–1871 (1996)CrossRefGoogle Scholar
  4. 4.
    Badia, R., Davison, A., Denker, M., Giesler, A., Gosh, S., Goble, C., Grewe, J., Grün, S., Hatsopoulos, N., LeFranc, Y., Muller, J., Pröpper, R., Teeters, J., Wachtler, T., Weeks, M., Zehl, L.: Report: INCF Program on Standards for data sharing: new perspectives on workflows and data management for the analysis of electrophysiological data (2015).
  5. 5.
    Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972)CrossRefGoogle Scholar
  6. 6.
    Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)CrossRefGoogle Scholar
  7. 7.
    Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)CrossRefGoogle Scholar
  8. 8.
    Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents — EEG, ECoG. LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)CrossRefGoogle Scholar
  9. 9.
    Denker, M., Einevoll, E., Franke, F., Grün, S., Hagen, E., Kerr, J., Nawrot, M., Ness, T., Ritz, R., Smith, L., Wachtler, T., Wójcik, D.: Report: 1st INCF workshop on validation of analysis methods (2014).
  10. 10.
    Denker, M., Wiebelt, B., Fliegner, D., Diesmann, M., Morrison, A.: Practically trivial parallel data processing in a neuroscience laboratory. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol. 7, pp. 413–436. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)CrossRefGoogle Scholar
  12. 12.
    Einevoll, G.T., Franke, F., Hagen, E., Pouzat, C., Harris, K.D.: Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 22(1), 11–17 (2012)CrossRefGoogle Scholar
  13. 13.
    Frostig, R.D., Lieke, E.E., Ts’o, D.Y., Grinvald, A.: Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. 87(16), 6082–6086 (1990)CrossRefGoogle Scholar
  14. 14.
    Garcia, S.: OpenElectrophy: an electrophysiological data and analysis sharing framework. Front. Neuroinf. 3, 14 (2009)CrossRefGoogle Scholar
  15. 15.
    Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., Davison, A.P.: Neo: an object model for handling electrophysiology data in multiple formats. Front. Neuroinf. 8, 10 (2014)CrossRefGoogle Scholar
  16. 16.
    Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2(11), 1527–1537 (1982)Google Scholar
  17. 17.
    Gramfort, A.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013)CrossRefGoogle Scholar
  18. 18.
    Grewe, J., Wachtler, T., Benda, J.: A bottom-up approach to data annotation in neurophysiology. Front. Neuroinf. 5, 16 (2011)CrossRefGoogle Scholar
  19. 19.
    Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R., Manker, A.: Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308(5962), 848–850 (1984)CrossRefGoogle Scholar
  20. 20.
    Grün, S.: Data-driven significance estimation for precise spike correlation. J. Neurophysiol. 101(3), 1126–1140 (2009)CrossRefGoogle Scholar
  21. 21.
    Kerr, J.N.D., Denk, W.: Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9(3), 195–205 (2008)CrossRefGoogle Scholar
  22. 22.
    Logothetis, N.K., Wandell, B.A.: Interpreting the BOLD signal. Annu. Rev. Physiol. 66(1), 735–769 (2004)CrossRefGoogle Scholar
  23. 23.
    Mitzdorf, U.: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65(1), 37–100 (1985)Google Scholar
  24. 24.
    Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S.I., Battaglia, F.P.: Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. J. Comput. Neurosci. 29(1–2), 309–325 (2010)CrossRefGoogle Scholar
  25. 25.
    Pröpper, R., Obermayer, K.: Spyke viewer: a flexible and extensible platform for electrophysiological data analysis. Front. Neuroinf. 7, 26 (2013)CrossRefGoogle Scholar
  26. 26.
    Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)Google Scholar
  27. 27.
    Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)CrossRefGoogle Scholar
  28. 28.
    Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006)CrossRefGoogle Scholar
  29. 29.
    Shimazaki, H., Amari, S., Brown, E.N., Grün, S.: State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput. Biol. 8(3), e1002385 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)CrossRefGoogle Scholar
  31. 31.
    Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)CrossRefGoogle Scholar
  32. 32.
    Staude, B., Rotter, S., Grün, S.: CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. J. Comput. Neurosci. 29(1–2), 327–350 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011)CrossRefGoogle Scholar
  34. 34.
    Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A.: In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. 100(12), 7319–7324 (2003)CrossRefGoogle Scholar
  35. 35.
    Takahashi, K., Kim, S., Coleman, T.P., Brown, K.A., Suminski, A.J., Best, M.D., Hatsopoulos, N.G.: Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nat. Commun. 6, 7169 (2015)CrossRefGoogle Scholar
  36. 36.
    Teeters, J.L., Harris, K.D., Millman, K.J., Olshausen, B.A., Sommer, F.T.: Data sharing for computational neuroscience. Neuroinformatics 6(1), 47–55 (2008)CrossRefGoogle Scholar
  37. 37.
    Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., Grün, S.: Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Front. Comput. Neurosci. 7, 132 (2013)CrossRefGoogle Scholar
  38. 38.
    Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)CrossRefGoogle Scholar
  39. 39.
    Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier, T., Riehle, A., Denker, M., Grün, S.: Handling metadata in a neurophysiology laboratory. Front. Neuroinform. 10, 26 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute IJülich Research CentreJülichGermany
  2. 2.Osaka UniversityOsakaJapan
  3. 3.RIKEN Brain Science InstituteWakoJapan
  4. 4.Theoretical Systems NeurobiologyRWTH Aachen UniversityAachenGermany

Personalised recommendations