Including Gap Junctions into Distributed Neuronal Network Simulations

  • Jan Hahne
  • Moritz Helias
  • Susanne Kunkel
  • Jun Igarashi
  • Itaru Kitayama
  • Brian Wylie
  • Matthias Bolten
  • Andreas Frommer
  • Markus Diesmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10087)


Contemporary simulation technology for neuronal networks enables the simulation of brain-scale networks using neuron models with a single or a few compartments. However, distributed simulations at full cell density are still lacking the electrical coupling between cells via so called gap junctions. This is due to the absence of efficient algorithms to simulate gap junctions on large parallel computers. The difficulty is that gap junctions require an instantaneous interaction between the coupled neurons, whereas the efficiency of simulation codes for spiking neurons relies on delayed communication. In a recent paper [15] we describe a technology to overcome this obstacle. Here, we give an overview of the challenges to include gap junctions into a distributed simulation scheme for neuronal networks and present an implementation of the new technology available in the NEural Simulation Tool (NEST 2.10.0). Subsequently we introduce the usage of gap junctions in model scripts as well as benchmarks assessing the performance and overhead of the technology on the supercomputers JUQUEEN and K computer.


Computational neuroscience Spiking neuronal network Gap junctions Waveform relaxation Supercomputer Large-scale simulation 



We gratefully acknowledge the NEST core team for an in-depth discussion of the user interface and Mitsuhisa Sato for hosting our activities at RIKEN AICS. Computing time on the K computer was provided through early access in the framework of the co-development program, project hp130120 of the General Use Category (2013), the Strategic Program (project hp150236, Neural Computation Unit, OIST), and MEXT SPIRE Supercomputational Life Science. The authors gratefully acknowledge the computing time on the supercomputer JUQUEEN [22] at Forschungszentrum Jülich granted by JARA-HPC Vergabegremium (provided on the JARA-HPC partition, jinb33) and Gauss Centre for Supercomputing (GCS) (provided by John von Neumann Institute for Computing (NIC) on GCS share, hwu12). Partly supported by Helmholtz Portfolio Supercomputing and Modeling for the Human Brain (SMHB), the Initiative and Networking Fund of the Helmholtz Association, the Helmholtz young investigator group VH-NG-1028, the Next-Generation Supercomputer Project of MEXT, and EU grant agreement No 720270 (HBP SGA1). All network simulations carried out with NEST (


  1. 1.
    Albada, S.J., Kunkel, S., Morrison, A., Diesmann, M.: Integrating brain structure and dynamics on supercomputers. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 22–32. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12084-3_3 Google Scholar
  2. 2.
    Amit, D.J.: Modeling Brain Function. Cambridge University Press, Cambridge (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Bos, H., Morrison, A., Peyser, A., Hahne, J., Helias, M., Kunkel, S., Ippen, T., Eppler, J.M., Schmidt, M., Seeholzer, A., Djurfeldt, M., Diaz, S., Morén, J., Deepu, R., Stocco, T., Deger, M., Michler, F., Plesser, H.E.: NEST 2.10.0 (Dec 2015).
  4. 4.
    Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45(3), 33001 (2012). MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3), 183–208 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Buice, M.A., Cowan, J.D., Chow, C.C.: Systematic fluctuation expansion for neural network activity equations. Neural Comput. 22, 377–426 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Byrne, G.D., Hindmarsh, A.C.: PVODE, an ODE solver for parallel computers. Int. J. High Perform. Comput. Appl. 13(4), 354–365 (1999).; CrossRefGoogle Scholar
  8. 8.
    Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27(1), 393–418 (2004)CrossRefGoogle Scholar
  9. 9.
    Dere, E., Zlomuzica, A.: The role of gap junctions in the brain in health and disease. Neurosci. Biobehav. Rev. 36, 206–217 (2011)CrossRefGoogle Scholar
  10. 10.
    Eppler, J.M., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.: PyNEST: a convenient interface to the NEST simulator. Front. Neuroinformatics 2, 12 (2009)Google Scholar
  11. 11.
    Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  12. 12.
    Ginzburg, I., Sompolinsky, H.: Theory of correlations in stochastic neural networks. Phys. Rev. E 50(4), 3171–3191 (1994)CrossRefGoogle Scholar
  13. 13.
    Glauber, R.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Grytskyy, D., Tetzlaff, T., Diesmann, M., Helias, M.: A unified view on weakly correlated recurrent networks. Front. Comput. Neurosci. 7, 131 (2013)CrossRefGoogle Scholar
  15. 15.
    Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., Diesmann, M.: A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Front. Neuroinform. 9, 22 (2015)CrossRefGoogle Scholar
  16. 16.
    Hansel, D., Mato, G., Pfeuty, B.: The role of intrinsic cell properties in synchrony of neurons interacting via electrical synapses. In: Schultheiss, N.W., Prinz, A.A., Butera, R.J. (eds.) Phase Response Curves in Neuroscience. SSCN, vol. 6, pp. 361–398. Springer, Heidelberg (2012). doi: 10.1007/978-1-4614-0739-3_15 CrossRefGoogle Scholar
  17. 17.
    Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)CrossRefGoogle Scholar
  18. 18.
    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Perseus Books, New York (1991)Google Scholar
  19. 19.
    Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005). MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hormuzdi, S., Filippov, M., Mitropoulou, G., Monyer, H., Bruzzone, R.: Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta 1662, 113–137 (2004)CrossRefGoogle Scholar
  22. 22.
    Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q\(^{\textregistered }\) supercomputer system at the Jülich Supercomputing Centre. J. Large-scale Res. Facil. 1 (2015).
  23. 23.
    Kunkel, S., Schmidt, M., Eppler, J.M., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M., Helias, M.: Spiking network simulation code for petascale computers. Front. Neuroinform. 8, 78 (2014)CrossRefGoogle Scholar
  24. 24.
    Lelarasmee, E.: The waveform relaxation method for time domain analysis of large scale integrated circuits: theory and applications. Memorandum p. No. UCB/ERL M82/40. (1982)Google Scholar
  25. 25.
    Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M.: Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput. 17(8), 1776–1801 (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jan Hahne
    • 1
  • Moritz Helias
    • 2
    • 3
    • 12
  • Susanne Kunkel
    • 3
    • 4
    • 5
  • Jun Igarashi
    • 6
    • 7
  • Itaru Kitayama
    • 7
    • 8
  • Brian Wylie
    • 9
  • Matthias Bolten
    • 10
  • Andreas Frommer
    • 1
  • Markus Diesmann
    • 2
    • 11
    • 12
  1. 1.School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
  2. 2.Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute IJülich Research CentreJülichGermany
  3. 3.RIKEN Advanced Institute for Computational ScienceProgramming Environment Research TeamKobeJapan
  4. 4.Department of Computational Science and Technology, School of Computer Science and CommunicationKTH Royal Institute of TechnologyStockholmSweden
  5. 5.Simulation Laboratory Neuroscience, Bernstein Facility for Simulation and Database TechnologyInstitute for Advanced Simulation, Jülich Aachen Research Alliance, Jülich Research CentreJülichGermany
  6. 6.Okinawa Institute of Science and Technology, Neural Computation UnitOkinawaJapan
  7. 7.Laboratory for Neural Circuit TheoryRIKEN Brain Science InstituteWakoJapan
  8. 8.HPC Usability Research TeamRIKEN Advanced Institute for Computational ScienceKobeJapan
  9. 9.Jülich Supercomputing Centre, Jülich Research CentreJülichGermany
  10. 10.Institut für MathematikUniversität KasselKasselGermany
  11. 11.Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
  12. 12.Department of Physics, Faculty 1RWTH Aachen UniversityAachenGermany

Personalised recommendations