Skip to main content

Deep Representations for Collaborative Robotics

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

Collaboration is an essential feature of human social interaction. Briefly, when two or more people agree on a common goal and a joint intention to reach that goal, they have to coordinate their actions to engage in joint actions, planning their courses of actions according to the actions of the other partners. The same holds for teams where the partners are people and robots, resulting on a collection of technical questions difficult to answer. Human-robot collaboration requires the robot to coordinate its behavior to the behaviors of the humans at different levels, e.g., the semantic level, the level of the content and behavior selection in the interaction, and low-level aspects such as the temporal dynamics of the interaction. This forces the robot to internalize information about the motions, actions and intentions of the rest of partners, and about the state of the environment. Furthermore, collaborative robots should select their actions taking into account additional human-aware factors such as safety, reliability and comfort. Current cognitive systems are usually limited in this respect as they lack the rich dynamic representations and the flexible human-aware planning capabilities needed to succeed in tomorrow human-robot collaboration tasks. Within this paper, we provide a tool for addressing this problem by using the notion of deep hybrid representations and the facilities that this common state representation offers for the tight coupling of planners on different layers of abstraction. Deep hybrid representations encode the robot and environment state, but also a robot-centric perspective of the partners taking part in the joint activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Obviously we are discarding here the one big agent-doing-everything case.

References

  1. http://www.openscenegraph.com

  2. Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)

    Article  Google Scholar 

  3. Blumenthal, S., Bruyninckx, H., Nowak, W., Prassler, E.: A scene graph based shared 3D world model for robotic applications. In: 2013 IEEE International Conference on Robotics and Automation, pp. 453–460, May 2013. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6630614

  4. Brugali, D., Scandurra, P.: Component-based robotic engineering (Part I). IEEE Robot. Autom. Mag. 16, 84–96 (2009)

    Article  Google Scholar 

  5. Brugali, D., Shakhimardanov, A.: Component-based robotic engineering (Part II): systems and models. IEEE Robot. Autom. Mag. 17(1), 100–112 (2010)

    Article  Google Scholar 

  6. Calderita, L.V., Bustos, P., Suárez Mejías, C., Fernández, F., Bandera, A.: THERAPIST: towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, vol. 1, pp. 374–377 (2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6563970&tag=1

  7. Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)

    Google Scholar 

  8. Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.R.: The Hearsay-II speech-understanding system: integrating knowledge to resolve uncertainty. ACM Comput. Surv. 12(2), 213–253 (1980)

    Article  Google Scholar 

  9. Foote, T.: tf: The transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–6. Open-Source Software workshop (2013)

    Google Scholar 

  10. Franklin, S., Graesser, A.: Is It an agent, or just a program?: A taxonomy for autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). doi:10.1007/BFb0013570

    Chapter  Google Scholar 

  11. Gratal, X., Romero, J., Bohg, J., Kragic, D.: Visual servoing on unknown objects. Mechatronics 22(4), 423–435 (2012). http://dx.doi.org/10.1016/j.mechatronics.2011.09.009

    Article  Google Scholar 

  12. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=538972

    Article  Google Scholar 

  13. Maes, P.: The agent network architecture (ANA). SIGART Bull. 2(4), 115–120 (1991)

    Article  Google Scholar 

  14. Manso, L.J.: Perception as stochastic sampling on dynamic graph spaces. Ph.D. thesis, Universidad de Extremadura (2013)

    Google Scholar 

  15. Manso, L., Bachiller, P., Bustos, P., Calderita, L.: RoboComp: a tool-based robotics framework. In: SIMPAR, Second International COnference on Simulation, Modelling and programming for Autonomous Robots (2010)

    Google Scholar 

  16. McManus, J.W.: Design and analysis of concurrent blackboard systems. Ph.D. thesis, College of William and Mary, Virginia (1992)

    Google Scholar 

  17. Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)

    Google Scholar 

  18. Newell, A.: Some problems of basic organization in problem-solving programs. Technical report, RAND Corporation (1962)

    Google Scholar 

  19. Oliver, G.S.: Pandamonium: a paradigm for learning. In: Proceedings of the Symposium on the Mechanization of Thought Processes, pp. 511–529 (1959)

    Google Scholar 

  20. Bustos, P., Martnez-Gomez, J., Garca-Varea, I., Rodrguez-Ruiz, L., Bachiller, P., Calderita, L., Manso, L.J., Sanchez, A., Bandera, A., Bandera, J.: Multimodal interaction with loki. In: Workshop of Physical Agents, Leon, Spain, pp. 1–8 (2013). http://ljmanso.com/files/Multimodal_interaction_with_Loki.pdf

  21. Poole, D., Mackworth, A.: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press, Cambridge (2010). http://artint.info/index.html

  22. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: ICMAS, pp. 312–319 (1995)

    Google Scholar 

  23. Rusell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson, Upper Saddle River (2009)

    Google Scholar 

  24. Sloman, A., Wyatt, J., Hawes, N., Chappell, J., Kruijff, G.J.: Long term requirements for cognitive robotics. In: Cognitive Robotics Papers from the 2006 AAAI Workshop Technical Report WS0603, pp. 143–150. No. McCarthy (2006). http://www.aaai.org/Papers/Workshops/2006/WS-06-03/WS06-03-022.pdf

  25. Wang, A.J.A., Qian, K.: Component-Oriented Programming. Wiley, Hoboken (2005)

    Book  Google Scholar 

  26. Kunze, L., Dolha, M.E., Guzman, E., Beetz, M.: Simulation-based temporal projection of everyday robot object manipulation. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011) (2011)

    Google Scholar 

  27. Clark, A.: An embodied cognitive science? Trends Cogn. Sci. 3(9), 345–351 (1999)

    Article  Google Scholar 

  28. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1997)

    Google Scholar 

  29. Calderita, L.V., Manso, L.J., Bustos, P., Suárez-Mejías, C., Fernández, F., Bandera, A.: THERAPIST: towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children. In: JMIR Rehabil Assist Technol (2014)

    Google Scholar 

  30. Romero-Garcés, A., Calderita, L.V., González, J., Bandera, J.P., Marfil, R., Manso, L.J., Bandera, A., Bustos, P.: Testing a fully autonomous robotic salesman in real scenarios. In: Conference: IEEE International Conference on Autonomous Robot Systems and Competitions (2015)

    Google Scholar 

  31. Manso, L.J.: Perception as stochastic sampling on dynamic graph spaces. Ph.D. dissertation, University of Extremadura, Spain (2013)

    Google Scholar 

  32. Kirsch, A., Kruse, T., Msenlechner, L.: An integrated planning and learning framework for human-robot interaction. In: 4th Workshop on Planning and Plan Execution for Real-World Systems (held in conjunction with ICApPS 09) (2009)

    Google Scholar 

  33. Beetz, M., Jain, D., Msenlechner, L., Tenorth, M.: Towards performing everyday manipulation activities. Robot. Autonom. Syst. 58, 1085–1095 (2010)

    Article  Google Scholar 

  34. Alami, R., Chatila, R., Clodic, A., Fleury, S., Herrb, M., Montreuil, V., Sisbot, E.A.: Towards human-aware cognitive robots. In: AAAI-06, Stanford Spring Symposium (2006)

    Google Scholar 

  35. Wintermute, S.: Imagery in cognitive architecture: representation and control at multiple levels of abstraction. Cogn. Syst. Res. 1920, 129 (2012)

    Google Scholar 

  36. Ali, M.: Contribution to decisional human-robot interaction: towards collaborative robot companions, Ph.D. thesis, Institut National de Sciences Appliquées de Toulouse, France (2012)

    Google Scholar 

  37. Holland, O.: The future of embodied artificial intelligence: machine consciousness? In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 37–53. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27833-7_3

    Chapter  Google Scholar 

  38. Manso, L.J.: Perception as stochastic sampling on dynamic graph spaces. Ph.D. thesis, University of Extremadura, Spain (2013)

    Google Scholar 

  39. http://wiki.ros.org/urdf

  40. https://www.khronos.org/collada/

Download references

Acknowledgments

This paper has been partially supported by the Spanish Ministerio de Economía y Competitividad TIN2015-65686-C5 and FEDER funds, and by the Innterconecta Programme 2011 project ITC-20111030 ADAPTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bandera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Manso, L.J. et al. (2016). Deep Representations for Collaborative Robotics. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics