Physiological Features of the Internal Jugular Vein from B-Mode Ultrasound Imagery

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10073)


Traditional methods of capturing vital signs by monitoring electrical impulses are quite effective however this data has the potential to be extracted from alternative technology. Non-invasive monitoring using low-cost ultrasound imaging of arterial and venous vasculature has the potential to detect standard vital signs such as heart and respiratory rate as well as additional parameters such as relative changes in circulating blood volume. This paper explores the feasibility of using ultrasound to monitor these signals by detecting spatial and temporal changes in the internal jugular vein (IJV). Ultrasound videos of the jugular in the transverse plane were collected from a subset of healthy subjects. Frame-by-frame segmentation of the IJV demonstrates frequency characteristics similar to certain physiological systems. Heart and respiratory rate appear to be present in IJV cross-sectional area variations in select ultrasound clips and may provide information regarding the severity of a patient’s illness.


Inferior Vena Cava Discrete Fourier Transform Internal Jugular Vein Respiratory Sinus Arrhythmia Pulse Pressure Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, R., Kelley, K., Light, R.P.: Diagnostic utility of blood volume monitoring in hemodialysis patients. Am. J. Kidney Dis. 51(2), 242–254 (2008)CrossRefGoogle Scholar
  2. 2.
    Barbier, C., Loubières, Y., Schmit, C., Hayon, J., Ricôme, J.-L., Jardin, F., Vieillard-Baron, A.: Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 30(9), 1740–1746 (2004)Google Scholar
  3. 3.
    Barrett, K., Brooks, H., Boitano, S., Barman, S.: Ganong’s Review of Medical Physiology. McGraw-Hill, New York (2010)Google Scholar
  4. 4.
    Bartlett, M.S.: Smoothing periodograms from time series with continuous spectra. Nature 161(4096), 686–687 (1948)CrossRefGoogle Scholar
  5. 5.
    Bellows, S., Smith, J., Mcguire, P., Smith, A.: Validation of a computerized technique for automatically tracking and measuring the inferior vena cava in ultrasound imagery. Stud. Health Technol. Inform. 207, 183 (2014)Google Scholar
  6. 6.
    Cahoon, D.H., Michael, I.E., Johnson, V.: Respiratory modification of the cardiac output. Am. J. Physiol. Legacy Content 133(3), 642–650 (1941)Google Scholar
  7. 7.
    Dorland, W.A.N.: Dorlands Pocket Medical Dictionary (1960)Google Scholar
  8. 8.
    Dornhorst, A.C., Howard, P., Leathart, G.L.: Respiratory variations in blood pressure. Circulation 6, 553–558 (1952)CrossRefGoogle Scholar
  9. 9.
    Feissel, M., Michard, F., Faller, J.-P., Teboul, J.-L.: The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 30(9), 1834–1837 (2004)CrossRefGoogle Scholar
  10. 10.
    Halliburton, W.D.: Traube waves and Mayer waves. Q. J. Exp. Physiol. 12(3), 227–229 (1919)CrossRefGoogle Scholar
  11. 11.
    Julien, C.: The enigma of Mayer waves: facts and models. Cardiovasc. Res. 70(1), 12–21 (2006)CrossRefGoogle Scholar
  12. 12.
    Karami, E., Shehata, M., McGuire, P., Smith, A.: A semi-automated technique for internal jugular vein segmentation in ultrasound images using active contours. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 184–187. IEEE (2016)Google Scholar
  13. 13.
    Lynn, S.B., Peter, G.S.: Bates’ Guide to Physical Examination and History Taking. Lippincott Williams & Wilkins, Philadelphia (2007)Google Scholar
  14. 14.
    Nakamura, K., Qian, K., Ando, T., Inokuchi, R., Doi, K., Kobayashi, E., Sakuma, I., Nakajima, S., Yahagi, N.: Cardiac variation of internal jugular vein for the evaluation of hemodynamics. Ultrasound Med. Biol. 42(8), 1764–1770 (2016)CrossRefGoogle Scholar
  15. 15.
    Palatini, P.: Need for a revision of the normal limits of resting heart rate. Hypertension 33(2), 622–625 (1999)CrossRefGoogle Scholar
  16. 16.
    Pellicori, P., Kallvikbacka-Bennett, A., Dierckx, R., Zhang, J., Putzu, P., Cuthbert, J., Boyalla, V., Shoaib, A., Clark, A.L., Cleland, J.G.F.: Prognostic significance of ultrasound-assessed jugular vein distensibility in heart failure. Heart 101(14), 1149–1158 (2015)CrossRefGoogle Scholar
  17. 17.
    Qian, K., Ando, T., Nakamura, K., Liao, H., Kobayashi, E., Yahagi, N., Sakuma, I.: Ultrasound imaging method for internal jugular vein measurement and estimation of circulating blood volume. Int. J. Comput. Assist. Radiol. Surg. 9(2), 231–239 (2014)CrossRefGoogle Scholar
  18. 18.
    Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E., Tomlanovich, M.: Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345(19), 1368–1377 (2001)CrossRefGoogle Scholar
  19. 19.
    Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–428 (1979)CrossRefGoogle Scholar
  20. 20.
    Sisini, F., Tessari, M., Gadda, G., Di Domenico, G., Taibi, A., Menegatti, E., Gambaccini, M., Zamboni, P.: An ultrasonographic technique to assess the jugular venous pulse: a proof of concept. Ultrasound Med. Biol. 41(5), 1334–1341 (2015)CrossRefGoogle Scholar
  21. 21.
    Takalo, R., Korhonen, I., Majahalme, S., Tuomisto, M., Turjanmaa, V.: Circadian profile of low-frequency oscillations in blood pressure and heart rate in hypertension. Am. J. Hypertens. 12(9 I), 874–881 (1999)CrossRefGoogle Scholar
  22. 22.
    Wolak, M.E., Fairbairn, D.J., Paulsen, Y.R.: Guidelines for estimating repeatability. Methods Ecol. Evol. 3(1), 129–137 (2012)CrossRefGoogle Scholar
  23. 23.
    Zengin, S., Al, B., Genc, S., Yildirim, C., Ercan, S., Dogan, M., Altunbas, G.: Role of inferior vena cava and right ventricular diameter in assessment of volume status: a comparative study: ultrasound and hypovolemia. Am. J. Emerg. Med. 31(5), 763–767 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Computer Engineering DepartmentMemorial UniversitySt. John’sCanada
  2. 2.Faculty of MedicineMemorial UniversitySt. John’sCanada
  3. 3.C-CORESt. John’sCanada

Personalised recommendations