Skip to main content

Micro/Nanoscale Optical Devices for Hyperspectral Imaging System

Abstract

Hyperspectral imaging (HSI) technique has successfully combined 2D images and spectral analysis for sensing and inspection functions and thus has a wide range of perspective applications. However, traditional HSI system using stand-alone dispersive optics or filters features with complex system structure, large devices and high cost. With development of microfabrication technology and materials, currently, compact microspectrometer integrated with spectral modulating optics and photodetectors have shown great potential in providing fast, reliable, robust and high performance hyperspectral imaging and spectroscopy system, which has drawn great attention in both academic researches and industry. Therefore, current research status of such devices are reviewed in this chapter in terms of novel structure design, fabrication techniques applied.

Keywords

  • Hyperspectral Imaging
  • Optical Performance
  • Electrostatic Actuator
  • Reflective Layer
  • Filter Array

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-50824-5_16
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-50824-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6
Fig. 16.7
Fig. 16.8
Fig. 16.9
Fig. 16.10

References

  1. L.P. Schuler, J.S. Milne, J.M. Dell, L. Faraone, MEMS-based microspectrometer technologies for NIR and MIR wavelengths. J. Phys. D. Appl. Phys. 42(13), 33001 (2009)

    CrossRef  Google Scholar 

  2. J.H. Correia, M. Bartek, R.F. Wolffenbuttel, Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range. Sensors Actuators A Phys. 76(1–3), 191–196 (1999)

    CrossRef  Google Scholar 

  3. J.H. Correia, G. de Graaf, S.H. Kong, M. Bartek, R.F. Wolffenbuttel, Single-chip CMOS optical microspectrometer. Sensors Actuators A Phys. 82(1–3), 191–197 (2000)

    CrossRef  Google Scholar 

  4. N.M. Lin, S.C. Shei, S.J. Chang, Design and Fabrication of a TiO2/SiO2 Dielectric broadband and wide-angle reflector and its application to GaN-based blue LEDs. IEEE J. Quantum Electron. 51(7), 1–5 (2015)

    CrossRef  Google Scholar 

  5. D.K. Tripathi, F. Jiang, R. Rafiei, K.K.M.B.D. Silva, J. Antoszewski, M. Martyniuk, J.M. Dell, L. Faraone, S. Member, Suspended large-area MEMS-based optical filters for multispectral shortwave infrared imaging applications. J. Microelectron. Syst. 24(4), 1102–1110 (2015)

    CrossRef  Google Scholar 

  6. C.A. Musca, J. Antoszewski, K.J. Winchester, A.J. Keating, T. Nguyen, K.K.M.B.D. Silva, J.M. Dell, L. Faraone, P. Mitra, J.D. Beck, M.R. Skokan, J.E. Robinson, Monolithic integration of an infrared photon detector with a MEMS-based tunable filter. IEEE Electron. Device Lett. 26(12), 888–890 (2005)

    CrossRef  Google Scholar 

  7. D.K. Tripathi, H. Mao, K.K.M.B.D. Silva, J.W. Bumgarner, M. Martyniuk, J.M. Dell, L. Faraone, Large-area MEMS-based distributed bragg reflectors for short-wave and mid-wave infrared hyperspectral imaging applications. J. Microelectromech. Syst. 24(6), 2136–2144 (2015)

    CrossRef  Google Scholar 

  8. T.G. Bifano, H.T. Johnson, P. Bierden, R.K. Mali, Elimination of stress-induced curvature in thin-film structures. J. Microelectromech. Syst. 11(5), 592–597 (2002)

    CrossRef  Google Scholar 

  9. J.S. Milne, J.M. Dell, A.J. Keating, L. Faraone, Widely tunable MEMS-based Fabry-Perot filter. J. Microelectromech. Syst. 18(4), 905–913 (2009)

    CrossRef  Google Scholar 

  10. M.S.C. Lu, G.K. Fedder, Position control of parallel-plate microactuators for probe-based data storage. J. Microelectromech. Syst. 13(5), 759–769 (2004)

    CrossRef  Google Scholar 

  11. S.-W. Wang, M. Li, C.-S. Xia, H.-Q. Wang, X.-S. Chen, W. Lu, 128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique. Appl. Phys. B Lasers Opt. 88(2), 281–284 (2007)

    CrossRef  Google Scholar 

  12. C.M. Waits, A. Modafe, R. Ghodssi, Investigation of gray-scale technology for large area 3D silicon MEMS structures. J. Micromech. Microeng. 13(2), 170 (2003)

    CrossRef  Google Scholar 

  13. M. Han, W. Lee, S.-K. Lee, S.S. Lee, 3D microfabrication with inclined/rotated UV lithography. Sensors Actuators A Phys. 111(1), 14–20 (2004)

    MathSciNet  CrossRef  Google Scholar 

  14. W.X. Yu, X.-C. Yuan, N.Q. Ngo, W.X. Que, W.C. Cheong, V. Koudriachov, Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing. Opt. Express 10(10), 443–448 (2002)

    CrossRef  Google Scholar 

  15. D. Y. Choi, Shadow mask and method of fabricating vertically tapered structure using the shadow mask, US7425275 B2, 2008

    Google Scholar 

  16. B. Sheng, P. Chen, C. Tao, R. Hong, Y. Huang, D. Zhang, Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique. Chin. Opt. Lett. 13(12), 122301 (2015)

    CrossRef  Google Scholar 

  17. A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, R.F. Wolffenbuttel, Vertically tapered layers for optical applications fabricated using resist reflow. J. Micromech. Microeng. 19(7), 074014 (2009)

    CrossRef  Google Scholar 

  18. N.P. Ayerden, G. de Graaf, R.F. Wolffenbuttel, Compact gas cell integrated with a linear variable optical filter. Opt. Express 24(3), 2981–3002 (2016)

    CrossRef  Google Scholar 

  19. N. Tack, A. Lambrechts, P. Soussan, L. Haspeslagh, A compact, high-speed, and low-cost hyperspectral imager, Proc. SPIE 8266, Silicon Photonics VII, 82660Q (2012)

    Google Scholar 

  20. A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, M. Jayapala, A CMOS-compatible, integrated approach to hyper- and multispectral imaging, 2014 I.E. International Electron Devices Meeting, 2014 pp. 10.5.1–10.5.4

    Google Scholar 

  21. J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. Silva, H. Huang, C. A. Musca, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, J. E. Robinson, A monolithically integrated HgCdTe SWIR photodetector and tunable MEMS-based optical filter, in Infrared Technology and Applications XXXI, Pts 1 and 2, 5783(1–2), 2005, pp. 719–727

    Google Scholar 

  22. A.J. Keating, K.K.M.B.D. Silva, J.M. Dell, C.A. Musca, L. Faraone, Optical characterization of Fabry-Perot MEMS filters integrated on tunable short-wave IR detectors. IEEE Photon. Technol. Lett. 18(9), 1079–1081 (2006)

    CrossRef  Google Scholar 

  23. R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15(5), 1175–1189 (2006)

    CrossRef  Google Scholar 

  24. H. Rong, Q.-A. Huang, M. Nie, W. Li, An analytical model for pull-in voltage of clamped–clamped multilayer beams. Sensors Actuators A Phys. 116(1), 15–21 (2004)

    CrossRef  Google Scholar 

  25. J.S. Milne, A.J. Keating, J. Antoszewski, J.M. Dell, C.A. Musca, L. Faraone, Extending the tuning range of SWIR microspectrometers. Proc. SPIE 6542, 65420M-1–65420M-11 (2007)

    CrossRef  Google Scholar 

  26. J. Milne, J. Dell, A. Keating, L. Faraone, Extended tuning range Fabry-Perot etalon with doubly-supported beam actuators. in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006, 2006, pp. 134–135

    Google Scholar 

  27. H. Mao, K.K.M.B.D. Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, B.D. Nener, J.M. Dell, L. Faraone, MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging. J. Microelectromech. Syst. 25(1), 227–235 (2016)

    CrossRef  Google Scholar 

  28. Q. Meng, S. Chen, J. Lai, Y. Huang, Z. Sun, Multi-physics simulation and fabrication of a compact 128x128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager. Appl. Opt. 54(22), 6850–6856 (2015)

    CrossRef  Google Scholar 

  29. A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J.H. Correia, R.F. Wolffenbuttel, An UV linear variable optical filter-based micro-spectrometer. Proc. Eng. 5, 416–419 (2010)

    CrossRef  Google Scholar 

  30. A. Emadi, Spectral measurement with a UV linear-variable optical filter microspectrometer, IEEE Sensors, 2011, pp. 420–423

    Google Scholar 

  31. A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J.H. Correia, R. Wolffenbuttel, Linear variable optical filter-based ultraviolet microspectrometer. Appl. Opt. 51(19), 4308–4315 (2012)

    CrossRef  Google Scholar 

  32. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J.H. Correia, R.F. Wolffenbuttel, Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer. Sensors Actuators A Phys. 162(2), 400–405 (2010)

    CrossRef  Google Scholar 

  33. A. Emadi, H. Wu, G. de Graaf, R. Wolffenbuttel, Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter. Opt. Express 20(1), 489–507 (2012)

    CrossRef  Google Scholar 

  34. N. P. Ayerden, M. Ghaderi, M. F. Silva, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, R. F. Wolffenbuttel, Design, fabrication and characterization of LVOF-based IR microspectrometers, in Proc. SPIE 9130, Micro-Optics 2014, vol 9130, p. 91300 T, 16–19 April 2014

    Google Scholar 

  35. M. Ghaderi, N.P. Ayerden, A. Emadi, P. Enoksson, J.H. Correia, G. de Graaf, R.F. Wolffenbuttel, Design, fabrication and characterization of infrared LVOFs for measuring gas composition. J. Micromech. Microeng. 24(8), 84001 (2014)

    CrossRef  Google Scholar 

  36. A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, R. F. Wolffenbuttel, Spectral measurement using IC-compatible linear variable optical filter, in Micro-optics 2010, 2010, vol 7716

    Google Scholar 

  37. A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, R. Wolffenbuttel, Design, fabrication and measurements with a UV linear-variable optical filter microspectrometer, in Optical Sensing and Detection II, 2012, vol. 8439

    Google Scholar 

  38. M.P. Christensen, G.W. Euliss, M.J. McFadden, K.M. Coyle, P. Milojkovic, M.W. Haney, J. van der Gracht, R.A. Athale, ACTIVE-EYES: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging. Appl. Opt. 41(29), 6093–6103 (2002)

    CrossRef  Google Scholar 

  39. A. Bednarkiewicz, M. Bouhifd, M.P. Whelan, Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl. Opt. 47(9), 1193–1199 (2008)

    CrossRef  Google Scholar 

  40. M.L. Mangum, E. Livingston, K.J. Zuzak, Visible to NIR DLP hyperspectral imaging system for surgical utility using inherent chromophores and fluorescent probes. Proc. SPIE 7932, 793203–793211 (2011)

    CrossRef  Google Scholar 

  41. E. Livingston, K. Zuzak, NIR DLP hyperspectral imaging system for medical applications. Proc. SPIE—Int. Soc. Opt. Eng. 7932, 793204–793209 (2011)

    Google Scholar 

  42. Y. Wang, Y.D. Gokdel, N. Triesault, L. Wang, Y.-Y. Huang, X. Zhang, Magnetic-actuated stainless steel scanner for two-photon hyperspectral fluorescence microscope. J. Microelectron. Syst. 23(5), 1208–1218 (2014)

    CrossRef  Google Scholar 

  43. Y. Wang, S. Bish, J.W. Tunnell, X. Zhang, MEMS scanner based handheld fluorescence hyperspectral imaging system. Sensors Actuators A Phys. 188, 450–455 (2012)

    CrossRef  Google Scholar 

  44. Y. Wang, S. Bish, A. Gopal, J. W. Tunnell, X. Zhang, MEMS scanner enabled real-time depth sensitive hyperspectral imaging, in Optical MEMS and Nanophotonics (OPT MEMS), 2010 International Conference on, 2010, pp. 2–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, L., Huang, C., Zhang, H. (2017). Micro/Nanoscale Optical Devices for Hyperspectral Imaging System. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)