Skip to main content

Polysaccharides in Supercapacitors

  • Chapter
  • First Online:
Polysaccharide Based Supercapacitors

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

In this part, the use of polysaccharides, either directly through composite approaches, or by carbonization will be described. In many cases, materials are obtained which are competitive in terms of capacitance and cycle lifetime. In this part, the use of polysaccharides, either directly through composite approaches, or by carbonization will be described. In many cases, materials are obtained which are competitive in terms of capacitance and cycle lifetime. The following part will focus mainly on cellulosic composites with conductive polymers since cellulose is most abundant and therefore has attracted much more research interest in this field whereas in the second part also other polysaccharides, such as chitin, xylans, alginates, pectins, dextrans and caragenaans have been used in carbonization experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lota, K., Khomenko, V., Frackowiak, E.: Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 65, 295 (2004)

    Article  CAS  Google Scholar 

  2. Wu, M.Q., Snook, G.A., Gupta, V., Shaffer, M., Fray, D.J., Chen, G.Z.: Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J. Mater. Chem. 15, 2297 (2005)

    Article  CAS  Google Scholar 

  3. Peng, C., Snook, G.A., Fray, D.J., Shaffer, M.S.P., Chen, G.Z.: Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chem. Commun. 4629 (2006)

    Google Scholar 

  4. Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dixon, G., Zhou, W.Z., Fray, D.J., Windle, A.H.: Carbon nanotube and polypyrrole composites: coating and doping. Adv. Mater. 12, 522 (2000)

    Article  CAS  Google Scholar 

  5. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Beguin, F.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)

    Article  CAS  Google Scholar 

  6. Khomenko, V., Frackowiak, E., Beguin, F.: Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50, 2499 (2005)

    Article  CAS  Google Scholar 

  7. Peng, C., Jin, J., Chen, G.Z.: A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim. Acta 53, 525 (2007)

    Article  CAS  Google Scholar 

  8. Hughes, M., Chen, G.Z., Shaffer, M.S.P., Fray, D.J., Windle, A.H.: Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610 (2002)

    Article  CAS  Google Scholar 

  9. Heath, L., Thielemans, W.: Cellulose nanowhisker aerogels. Green Chem. 12, 1448 (2010)

    Article  CAS  Google Scholar 

  10. Tanaka, R., Saito, T., Isogai, A.: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int. J. Biol. Macromol. 51, 228 (2012)

    Article  CAS  Google Scholar 

  11. Kaushik, A., Singh, M., Verma, G.: Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr. Polym. 82, 337 (2010)

    Article  CAS  Google Scholar 

  12. Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., Wild, P.M.: Review: current international research into cellulosic fibres and composites. J. Mater. Sci. 36, 2107 (2001)

    Article  CAS  Google Scholar 

  13. Samir, M., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612 (2005)

    Article  CAS  Google Scholar 

  14. Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. Bioresources 3, 929 (2008)

    Google Scholar 

  15. Eichhorn, S.J.: Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7, 303 (2011)

    Article  CAS  Google Scholar 

  16. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1 (2010)

    Article  CAS  Google Scholar 

  17. Liew, S.Y., Thielemans, W., Walsh, D.A.: Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J. Phys. Chem. C 114, 17926 (2010)

    Article  CAS  Google Scholar 

  18. Habibi, Y., Chanzy, H., Vignon, M.R.: TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13, 679 (2006)

    Article  CAS  Google Scholar 

  19. Snook, G.A., Peng, C., Fray, D.J., Chen, G.Z.: Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem. Commun. 9, 83 (2007)

    Article  CAS  Google Scholar 

  20. Liew, S.Y., Walsh, D.A., Thielemans, W.: High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Adv. 3, 9158 (2013)

    Article  CAS  Google Scholar 

  21. Snook, G.A., Kao, P., Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)

    Article  CAS  Google Scholar 

  22. Liew, S., Thielemans, W., Walsh, D.: Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem. 1 (2014)

    Google Scholar 

  23. Macdonald, D.D.: Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376 (2006)

    Article  CAS  Google Scholar 

  24. Wu, X., Chabot, V.L., Kim, B.K., Yu, A., Berry, R.M., Tam, K.C.: Cost-effective and scalable chemical synthesis of conductive cellulose nanocrystals for high-performance supercapacitors. Electrochim. Acta 138, 139 (2014)

    Article  CAS  Google Scholar 

  25. Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M., Parmentier, J., Beguin, F.: Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293 (2005)

    Article  CAS  Google Scholar 

  26. Wu, X., Tang, J., Duan, Y., Yu, A., Berry, R.M., Tam, K.C.: Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J. Mater. Chem. A 2, 19268 (2014)

    Article  CAS  Google Scholar 

  27. Olsson, H., Nystrom, G., Stromme, M., Sjodin, M., Nyholm, L.: Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochem. Commun. 13, 869 (2011)

    Article  CAS  Google Scholar 

  28. Razaq, A., Nyholm, L., Sjodin, M., Stromme, M., Mihranyan, A.: Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv. Energy Mater. 2, 445 (2012)

    Article  CAS  Google Scholar 

  29. Wang, H., Bian, L., Zhou, P., Tang, J., Tang, W.: Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 1, 578 (2013)

    Article  CAS  Google Scholar 

  30. Xu, J., Zhu, L.G., Bai, Z.K., Liang, G.J., Liu, L., Fang, D., Xu, W.L.: Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org. Electron. 14, 3331 (2013)

    Article  CAS  Google Scholar 

  31. Nystrom, G., Stromme, M., Sjodin, M., Nyholm, L.: Rapid potential step charging of paper-based polypyrrole energy storage devices. Electrochim. Acta 70, 91 (2012)

    Article  Google Scholar 

  32. Wang, Z., Tammela, P., Zhang, P., Stromme, M., Nyholm, L.: High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. J. Mater. Chem. A 2, 16761 (2014)

    Article  CAS  Google Scholar 

  33. Frackowiak, E., Beguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)

    Google Scholar 

  34. Zhang, X.D., Lin, Z.Y., Chen, B., Sharma, S., Wong, C.P., Zhang, W., Deng, Y.L.: Solid-state, flexible, high strength paper-based supercapacitors. J. Mater. Chem. A 1, 5835 (2013)

    Article  CAS  Google Scholar 

  35. Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M.: Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U.S.A. 104, 13574 (2007)

    Article  CAS  Google Scholar 

  36. Yuan, L.Y., Yao, B., Hu, B., Huo, K.F., Chen, W., Zhou, J.: Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6, 470 (2013)

    Article  CAS  Google Scholar 

  37. Yuan, L., Xiao, X., Ding, T., Zhong, J., Zhang, X., Shen, Y., Hu, B., Huang, Y., Zhou, J., Wang, Z.L.: Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51, 4934 (2012)

    Article  CAS  Google Scholar 

  38. Nyholm, L., Nystrom, G., Mihranyan, A., Stromme, M.: Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 23, 3751 (2011)

    CAS  Google Scholar 

  39. Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M.: Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917 (2011)

    Article  CAS  Google Scholar 

  40. Gui, Z., Zhu, H.L., Gillette, E., Han, X.G., Rubloff, G.W., Hu, L.B., Lee, S.B.: Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7, 6037 (2013)

    Article  CAS  Google Scholar 

  41. Babu, K.F., Subramanian, S.P.S., Kulandainathan, M.A.: Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr. Polym. 94, 487 (2013)

    Article  Google Scholar 

  42. Zhu, L.G., Wu, L., Sun, Y.Y., Li, M.X., Xu, J., Bai, Z.K., Liang, G.J., Liu, L., Fang, D., Xu, W.L.: Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes. RSC Adv. 4, 6261 (2014)

    Article  CAS  Google Scholar 

  43. Niu, Q., Gao, K., Shao, Z.: Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 6, 4083 (2014)

    Article  CAS  Google Scholar 

  44. Kang, Y.R., Li, Y.L., Hou, F., Wen, Y.Y., Su, D.: Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4, 3248 (2012)

    Article  CAS  Google Scholar 

  45. Kang, Y.J., Chun, S.J., Lee, S.S., Kim, B.Y., Kim, J.H., Chung, H., Lee, S.Y., Kim, W.: All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6, 6400 (2012)

    Article  CAS  Google Scholar 

  46. Wang, X., Gao, K., Shao, Z., Peng, X., Wu, X., Wang, F.: Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J. Power Sources 249, 148 (2014)

    Article  CAS  Google Scholar 

  47. Hamedi, M., Karabulut, E., Marais, A., Herland, A., Nyström, G., Wågberg, L.: Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem. Int. Ed. 52, 12038 (2013)

    Article  CAS  Google Scholar 

  48. Nystrom, G., Marais, A., Karabulut, E., Wagberg, L., Cui, Y., Hamedi, M.M.: Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 6 (2015)

    Google Scholar 

  49. Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., Strømme, M.: A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114, 4178 (2010)

    Article  Google Scholar 

  50. Carlsson, D.O., Nystrom, G., Zhou, Q., Berglund, L.A., Nyholm, L., Stromme, M.: Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J. Mater. Chem. 22, 19014 (2012)

    Article  CAS  Google Scholar 

  51. Wang, H., Zhu, E., Yang, J., Zhou, P., Sun, D., Tang, W.: Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116, 13013 (2012)

    Article  CAS  Google Scholar 

  52. Tammela, P., Wang, Z., Frykstrand, S., Zhang, P., Sintorn, I.-M., Nyholm, L., Stromme, M.: Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Adv. 5, 16405 (2015)

    Article  CAS  Google Scholar 

  53. Ma, G., Yang, Q., Sun, K., Peng, H., Ran, F., Zhao, X., Lei, Z.: Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 197, 137 (2015)

    Article  CAS  Google Scholar 

  54. Hou, J., Cao, C., Ma, X., Idrees, F., Xu, B., Hao, X., Lin, W.: From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci. Rep. 4, 7260 (2014)

    Article  CAS  Google Scholar 

  55. Jain, A., Xu, C., Jayaraman, S., Balasubramanian, R., Lee, J.Y., Srinivasan, M.P.: Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater. 218, 55 (2015)

    Article  CAS  Google Scholar 

  56. Song, S., Ma, F., Wu, G., Ma, D., Geng, W., Wan, J.: Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154 (2015)

    Article  CAS  Google Scholar 

  57. Chen, H., Liu, D., Shen, Z., Bao, B., Zhao, S., Wu, L.: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 180, 241 (2015)

    Article  CAS  Google Scholar 

  58. Wang, J., Shen, L., Xu, Y., Dou, H., Zhang, X.: Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New J. Chem. 39, 9497 (2015)

    Article  CAS  Google Scholar 

  59. Li, Y., Zhang, Q., Zhang, J., Jin, L., Zhao, X., Xu, T.: A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure. Sci. Rep. 5, 14155 (2015)

    Article  CAS  Google Scholar 

  60. Li, Y., Yu, N., Yan, P., Li, Y., Zhou, X., Chen, S., Wang, G., Wei, T., Fan, Z.: Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J. Power Sources 300, 309 (2015)

    Article  CAS  Google Scholar 

  61. Wang, P., Wang, Q., Zhang, G., Jiao, H., Deng, X., Liu, L.: Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. J. Solid State Electrochem. Ahead of Print (2015)

    Google Scholar 

  62. Ma, G., Ran, F., Peng, H., Sun, K., Zhang, Z., Yang, Q., Lei, Z.: Nitrogen-doped porous carbon obtained via one-step carbonizing biowaste soybean curd residue for supercapacitor applications. RSC Adv. 5, 83129 (2015)

    Article  CAS  Google Scholar 

  63. Fan, Z., Qi, D., Xiao, Y., Yan, J., Wei, T.: One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater. Lett. 101, 29 (2013)

    Article  CAS  Google Scholar 

  64. Peng, C., Lang, J., Xu, S., Wang, X.: Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv. 4, 54662 (2014)

    Article  CAS  Google Scholar 

  65. Lv, Y., Gan, L., Liu, M., Xiong, W., Xu, Z., Zhu, D., Wright, D.S.: A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 209, 152 (2012)

    Article  CAS  Google Scholar 

  66. Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., Lu, G.-Q.: Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102, 1118 (2011)

    Article  CAS  Google Scholar 

  67. Rufford, T.E., Hulicova-Jurcakova, D., Zhu, Z., Lu, G.Q.: Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 10, 1594 (2008)

    Article  CAS  Google Scholar 

  68. Jiang, L., Nelson, G.W., Kim, H., Sim, I.N., Han, S.O., Foord, J.S.: Cellulose-derived supercapacitors from the carbonisation of filter paper. ChemistryOpen 4, 586 (2015)

    Article  CAS  Google Scholar 

  69. Hu, C., He, S., Jiang, S., Chen, S., Hou, H.: Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Adv. 5, 14441 (2015)

    Article  CAS  Google Scholar 

  70. He, S., Hu, C., Hou, H., Chen, W.: Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources 246, 754 (2014)

    Article  CAS  Google Scholar 

  71. He, S., Chen, W.: Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J. Power Sources 294, 150 (2015)

    Article  CAS  Google Scholar 

  72. Cai, J., Xiong, H., Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Lin, T., Xie, Z.: High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Interfaces 7, 14946 (2015)

    Article  CAS  Google Scholar 

  73. Kuzmenko, V., Naboka, O., Staaf, H., Haque, M., Goeransson, G., Lundgren, P., Gatenholm, P., Enoksson, P.: Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater. Chem. Phys. 160, 59 (2015)

    Article  CAS  Google Scholar 

  74. Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De, H.-D.R.D.A., Eichhorn, S.J.: Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 5, 9983 (2013)

    Article  CAS  Google Scholar 

  75. Kuzmenko, V., Naboka, O., Haque, M., Staaf, H., Goeransson, G., Gatenholm, P., Enoksson, P.: Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy (Oxford, U.K.) 90, 1490 (2015)

    Google Scholar 

  76. Chen, L.-F., Huang, Z.-H., Liang, H.-W., Yao, W.-T., Yu, Z.-Y., Yu, S.-H.: Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331 (2013)

    Article  CAS  Google Scholar 

  77. Yu, W., Lin, W., Shao, X., Hu, Z., Li, R., Yuan, D.: High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 272, 137 (2014)

    Article  CAS  Google Scholar 

  78. Chen, L.-F., Huang, Z.-H., Liang, H.-W., Gao, H.-L., Yu, S.-H.: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104 (2014)

    Article  CAS  Google Scholar 

  79. Chen, L.-F., Huang, Z.-H., Liang, H.-W., Guan, Q.-F., Yu, S.-H.: Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25, 4746 (2013)

    Article  CAS  Google Scholar 

  80. Long, C., Qi, D., Wei, T., Yan, J., Jiang, L., Fan, Z.: Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24, 3953 (2014)

    Article  CAS  Google Scholar 

  81. Shopsowitz, K.E., Hamad, W.Y., MacLachlan, M.J.: Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew. Chem. Int. Ed. 50, 10991 (2011)

    Article  CAS  Google Scholar 

  82. Yang, X., Cranston, E.D., Shi, K., Zhitomirsky, I.: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27, 6104 (2015)

    Article  CAS  Google Scholar 

  83. Silva, R., Pereira, G.M., Voiry, D., Chhowalla, M., Asefa, T.: Co3O4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Adv. 5, 49385 (2015)

    Article  CAS  Google Scholar 

  84. Wu, X., Shi, Z., Tjandra, R., Cousins, A.J., Sy, S., Yu, A., Berry, R.M., Tam, K.C.: Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes. J. Mater. Chem. A 3, 23768 (2015)

    Article  CAS  Google Scholar 

  85. Deng, J., Xiong, T., Xu, F., Li, M., Han, C., Gong, Y., Wang, H., Wang, Y.: Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053 (2015)

    Article  CAS  Google Scholar 

  86. Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R., Yushin, G.: Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 1, 356 (2011)

    Article  CAS  Google Scholar 

  87. Huang, J., Wang, J., Wang, C., Zhang, H., Lu, C., Wang, J.: Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107 (2015)

    Article  CAS  Google Scholar 

  88. Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A., Chen, Y.: Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013)

    Google Scholar 

  89. Singsang, W., Panapoy, M., Ksapabutr, B.: Facile one-pot synthesis of freestanding carbon nanotubes on cellulose-derived carbon films for supercapacitor applications: effect of the synthesis temperature. Energy Procedia 56, 439 (2014)

    Article  CAS  Google Scholar 

  90. Raymundo-Pinero, E., Gao, Q., Beguin, F.: Carbons for supercapacitors obtained by one-step pressure induced oxidation at low temperature. Carbon 61, 278 (2013)

    Article  CAS  Google Scholar 

  91. Yun, Y.S., Shim, J., Tak, Y., Jin, H.-J.: Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates. RSC Adv. 2, 4353 (2012)

    Article  CAS  Google Scholar 

  92. Babel, K., Jurewicz, K.: Electrical capacitance of fibrous carbon composites in supercapacitors. Fuel Process. Technol. 77–78, 181 (2002)

    Article  Google Scholar 

  93. Qu, J., Geng, C., Lv, S., Shao, G., Ma, S., Wu, M.: Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 176, 982 (2015)

    Article  CAS  Google Scholar 

  94. Wahid, M., Parte, G., Fernandes, R., Kothari, D., Ogale, S.: Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Adv. 5, 51382 (2015)

    Article  CAS  Google Scholar 

  95. Fan, Y., Yang, X., Zhu, B., Liu, P.-F., Lu, H.-T.: Micro-mesoporous carbon spheres derived from Carrageenan as electrode material for supercapacitors. J. Power Sources 268, 584 (2014)

    Article  CAS  Google Scholar 

  96. Sethuraman, B., Purushothaman, K.K., Muralidharan, G.: Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Adv. 4, 4631 (2014)

    Article  CAS  Google Scholar 

  97. Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., Cai, H., Liu, H., Wong, C.P., Umar, A.: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120 (2014)

    Article  CAS  Google Scholar 

  98. Wang, H., Li, Z., Tak, J.K., Holt, C.M.B., Tan, X., Xu, Z., Amirkhiz, B.S., Harfield, D., Anyia, A., Stephenson, T., Mitlin, D.: Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 57, 317 (2013)

    Article  CAS  Google Scholar 

  99. Falco, C., Sieben, J.M., Brun, N., Sevilla, M., van der Mauelen, T., Morallon, E., Cazorla-Amoros, D., Titirici, M.-M.: Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6, 374 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yee Liew, S., Thielemans, W., Freunberger, S., Spirk, S. (2017). Polysaccharides in Supercapacitors. In: Polysaccharide Based Supercapacitors. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-50754-5_2

Download citation

Publish with us

Policies and ethics