Advertisement

Polysaccharides in Supercapacitors

  • Soon Yee Liew
  • Wim Thielemans
  • Stefan Freunberger
  • Stefan Spirk
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

In this part, the use of polysaccharides, either directly through composite approaches, or by carbonization will be described. In many cases, materials are obtained which are competitive in terms of capacitance and cycle lifetime. In this part, the use of polysaccharides, either directly through composite approaches, or by carbonization will be described. In many cases, materials are obtained which are competitive in terms of capacitance and cycle lifetime. The following part will focus mainly on cellulosic composites with conductive polymers since cellulose is most abundant and therefore has attracted much more research interest in this field whereas in the second part also other polysaccharides, such as chitin, xylans, alginates, pectins, dextrans and caragenaans have been used in carbonization experiments.

Keywords

Specific Capacitance Bacterial Cellulose Nanocomposite Film Carbon Nanofibers Carbon Aerogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lota, K., Khomenko, V., Frackowiak, E.: Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 65, 295 (2004)CrossRefGoogle Scholar
  2. 2.
    Wu, M.Q., Snook, G.A., Gupta, V., Shaffer, M., Fray, D.J., Chen, G.Z.: Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J. Mater. Chem. 15, 2297 (2005)CrossRefGoogle Scholar
  3. 3.
    Peng, C., Snook, G.A., Fray, D.J., Shaffer, M.S.P., Chen, G.Z.: Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chem. Commun. 4629 (2006)Google Scholar
  4. 4.
    Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dixon, G., Zhou, W.Z., Fray, D.J., Windle, A.H.: Carbon nanotube and polypyrrole composites: coating and doping. Adv. Mater. 12, 522 (2000)CrossRefGoogle Scholar
  5. 5.
    Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Beguin, F.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)CrossRefGoogle Scholar
  6. 6.
    Khomenko, V., Frackowiak, E., Beguin, F.: Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50, 2499 (2005)CrossRefGoogle Scholar
  7. 7.
    Peng, C., Jin, J., Chen, G.Z.: A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim. Acta 53, 525 (2007)CrossRefGoogle Scholar
  8. 8.
    Hughes, M., Chen, G.Z., Shaffer, M.S.P., Fray, D.J., Windle, A.H.: Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610 (2002)CrossRefGoogle Scholar
  9. 9.
    Heath, L., Thielemans, W.: Cellulose nanowhisker aerogels. Green Chem. 12, 1448 (2010)CrossRefGoogle Scholar
  10. 10.
    Tanaka, R., Saito, T., Isogai, A.: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int. J. Biol. Macromol. 51, 228 (2012)CrossRefGoogle Scholar
  11. 11.
    Kaushik, A., Singh, M., Verma, G.: Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr. Polym. 82, 337 (2010)CrossRefGoogle Scholar
  12. 12.
    Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., Wild, P.M.: Review: current international research into cellulosic fibres and composites. J. Mater. Sci. 36, 2107 (2001)CrossRefGoogle Scholar
  13. 13.
    Samir, M., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612 (2005)CrossRefGoogle Scholar
  14. 14.
    Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. Bioresources 3, 929 (2008)Google Scholar
  15. 15.
    Eichhorn, S.J.: Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7, 303 (2011)CrossRefGoogle Scholar
  16. 16.
    Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1 (2010)CrossRefGoogle Scholar
  17. 17.
    Liew, S.Y., Thielemans, W., Walsh, D.A.: Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J. Phys. Chem. C 114, 17926 (2010)CrossRefGoogle Scholar
  18. 18.
    Habibi, Y., Chanzy, H., Vignon, M.R.: TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13, 679 (2006)CrossRefGoogle Scholar
  19. 19.
    Snook, G.A., Peng, C., Fray, D.J., Chen, G.Z.: Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem. Commun. 9, 83 (2007)CrossRefGoogle Scholar
  20. 20.
    Liew, S.Y., Walsh, D.A., Thielemans, W.: High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Adv. 3, 9158 (2013)CrossRefGoogle Scholar
  21. 21.
    Snook, G.A., Kao, P., Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  22. 22.
    Liew, S., Thielemans, W., Walsh, D.: Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem. 1 (2014)Google Scholar
  23. 23.
    Macdonald, D.D.: Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376 (2006)CrossRefGoogle Scholar
  24. 24.
    Wu, X., Chabot, V.L., Kim, B.K., Yu, A., Berry, R.M., Tam, K.C.: Cost-effective and scalable chemical synthesis of conductive cellulose nanocrystals for high-performance supercapacitors. Electrochim. Acta 138, 139 (2014)CrossRefGoogle Scholar
  25. 25.
    Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M., Parmentier, J., Beguin, F.: Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293 (2005)CrossRefGoogle Scholar
  26. 26.
    Wu, X., Tang, J., Duan, Y., Yu, A., Berry, R.M., Tam, K.C.: Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J. Mater. Chem. A 2, 19268 (2014)CrossRefGoogle Scholar
  27. 27.
    Olsson, H., Nystrom, G., Stromme, M., Sjodin, M., Nyholm, L.: Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochem. Commun. 13, 869 (2011)CrossRefGoogle Scholar
  28. 28.
    Razaq, A., Nyholm, L., Sjodin, M., Stromme, M., Mihranyan, A.: Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv. Energy Mater. 2, 445 (2012)CrossRefGoogle Scholar
  29. 29.
    Wang, H., Bian, L., Zhou, P., Tang, J., Tang, W.: Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 1, 578 (2013)CrossRefGoogle Scholar
  30. 30.
    Xu, J., Zhu, L.G., Bai, Z.K., Liang, G.J., Liu, L., Fang, D., Xu, W.L.: Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org. Electron. 14, 3331 (2013)CrossRefGoogle Scholar
  31. 31.
    Nystrom, G., Stromme, M., Sjodin, M., Nyholm, L.: Rapid potential step charging of paper-based polypyrrole energy storage devices. Electrochim. Acta 70, 91 (2012)CrossRefGoogle Scholar
  32. 32.
    Wang, Z., Tammela, P., Zhang, P., Stromme, M., Nyholm, L.: High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. J. Mater. Chem. A 2, 16761 (2014)CrossRefGoogle Scholar
  33. 33.
    Frackowiak, E., Beguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)Google Scholar
  34. 34.
    Zhang, X.D., Lin, Z.Y., Chen, B., Sharma, S., Wong, C.P., Zhang, W., Deng, Y.L.: Solid-state, flexible, high strength paper-based supercapacitors. J. Mater. Chem. A 1, 5835 (2013)CrossRefGoogle Scholar
  35. 35.
    Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M.: Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U.S.A. 104, 13574 (2007)CrossRefGoogle Scholar
  36. 36.
    Yuan, L.Y., Yao, B., Hu, B., Huo, K.F., Chen, W., Zhou, J.: Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6, 470 (2013)CrossRefGoogle Scholar
  37. 37.
    Yuan, L., Xiao, X., Ding, T., Zhong, J., Zhang, X., Shen, Y., Hu, B., Huang, Y., Zhou, J., Wang, Z.L.: Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51, 4934 (2012)CrossRefGoogle Scholar
  38. 38.
    Nyholm, L., Nystrom, G., Mihranyan, A., Stromme, M.: Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 23, 3751 (2011)Google Scholar
  39. 39.
    Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M.: Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917 (2011)CrossRefGoogle Scholar
  40. 40.
    Gui, Z., Zhu, H.L., Gillette, E., Han, X.G., Rubloff, G.W., Hu, L.B., Lee, S.B.: Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7, 6037 (2013)CrossRefGoogle Scholar
  41. 41.
    Babu, K.F., Subramanian, S.P.S., Kulandainathan, M.A.: Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr. Polym. 94, 487 (2013)CrossRefGoogle Scholar
  42. 42.
    Zhu, L.G., Wu, L., Sun, Y.Y., Li, M.X., Xu, J., Bai, Z.K., Liang, G.J., Liu, L., Fang, D., Xu, W.L.: Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes. RSC Adv. 4, 6261 (2014)CrossRefGoogle Scholar
  43. 43.
    Niu, Q., Gao, K., Shao, Z.: Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 6, 4083 (2014)CrossRefGoogle Scholar
  44. 44.
    Kang, Y.R., Li, Y.L., Hou, F., Wen, Y.Y., Su, D.: Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4, 3248 (2012)CrossRefGoogle Scholar
  45. 45.
    Kang, Y.J., Chun, S.J., Lee, S.S., Kim, B.Y., Kim, J.H., Chung, H., Lee, S.Y., Kim, W.: All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6, 6400 (2012)CrossRefGoogle Scholar
  46. 46.
    Wang, X., Gao, K., Shao, Z., Peng, X., Wu, X., Wang, F.: Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J. Power Sources 249, 148 (2014)CrossRefGoogle Scholar
  47. 47.
    Hamedi, M., Karabulut, E., Marais, A., Herland, A., Nyström, G., Wågberg, L.: Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem. Int. Ed. 52, 12038 (2013)CrossRefGoogle Scholar
  48. 48.
    Nystrom, G., Marais, A., Karabulut, E., Wagberg, L., Cui, Y., Hamedi, M.M.: Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 6 (2015)Google Scholar
  49. 49.
    Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., Strømme, M.: A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114, 4178 (2010)CrossRefGoogle Scholar
  50. 50.
    Carlsson, D.O., Nystrom, G., Zhou, Q., Berglund, L.A., Nyholm, L., Stromme, M.: Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J. Mater. Chem. 22, 19014 (2012)CrossRefGoogle Scholar
  51. 51.
    Wang, H., Zhu, E., Yang, J., Zhou, P., Sun, D., Tang, W.: Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116, 13013 (2012)CrossRefGoogle Scholar
  52. 52.
    Tammela, P., Wang, Z., Frykstrand, S., Zhang, P., Sintorn, I.-M., Nyholm, L., Stromme, M.: Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Adv. 5, 16405 (2015)CrossRefGoogle Scholar
  53. 53.
    Ma, G., Yang, Q., Sun, K., Peng, H., Ran, F., Zhao, X., Lei, Z.: Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 197, 137 (2015)CrossRefGoogle Scholar
  54. 54.
    Hou, J., Cao, C., Ma, X., Idrees, F., Xu, B., Hao, X., Lin, W.: From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci. Rep. 4, 7260 (2014)CrossRefGoogle Scholar
  55. 55.
    Jain, A., Xu, C., Jayaraman, S., Balasubramanian, R., Lee, J.Y., Srinivasan, M.P.: Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater. 218, 55 (2015)CrossRefGoogle Scholar
  56. 56.
    Song, S., Ma, F., Wu, G., Ma, D., Geng, W., Wan, J.: Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154 (2015)CrossRefGoogle Scholar
  57. 57.
    Chen, H., Liu, D., Shen, Z., Bao, B., Zhao, S., Wu, L.: Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 180, 241 (2015)CrossRefGoogle Scholar
  58. 58.
    Wang, J., Shen, L., Xu, Y., Dou, H., Zhang, X.: Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New J. Chem. 39, 9497 (2015)CrossRefGoogle Scholar
  59. 59.
    Li, Y., Zhang, Q., Zhang, J., Jin, L., Zhao, X., Xu, T.: A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure. Sci. Rep. 5, 14155 (2015)CrossRefGoogle Scholar
  60. 60.
    Li, Y., Yu, N., Yan, P., Li, Y., Zhou, X., Chen, S., Wang, G., Wei, T., Fan, Z.: Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J. Power Sources 300, 309 (2015)CrossRefGoogle Scholar
  61. 61.
    Wang, P., Wang, Q., Zhang, G., Jiao, H., Deng, X., Liu, L.: Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. J. Solid State Electrochem. Ahead of Print (2015)Google Scholar
  62. 62.
    Ma, G., Ran, F., Peng, H., Sun, K., Zhang, Z., Yang, Q., Lei, Z.: Nitrogen-doped porous carbon obtained via one-step carbonizing biowaste soybean curd residue for supercapacitor applications. RSC Adv. 5, 83129 (2015)CrossRefGoogle Scholar
  63. 63.
    Fan, Z., Qi, D., Xiao, Y., Yan, J., Wei, T.: One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater. Lett. 101, 29 (2013)CrossRefGoogle Scholar
  64. 64.
    Peng, C., Lang, J., Xu, S., Wang, X.: Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv. 4, 54662 (2014)CrossRefGoogle Scholar
  65. 65.
    Lv, Y., Gan, L., Liu, M., Xiong, W., Xu, Z., Zhu, D., Wright, D.S.: A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 209, 152 (2012)CrossRefGoogle Scholar
  66. 66.
    Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., Lu, G.-Q.: Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102, 1118 (2011)CrossRefGoogle Scholar
  67. 67.
    Rufford, T.E., Hulicova-Jurcakova, D., Zhu, Z., Lu, G.Q.: Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 10, 1594 (2008)CrossRefGoogle Scholar
  68. 68.
    Jiang, L., Nelson, G.W., Kim, H., Sim, I.N., Han, S.O., Foord, J.S.: Cellulose-derived supercapacitors from the carbonisation of filter paper. ChemistryOpen 4, 586 (2015)CrossRefGoogle Scholar
  69. 69.
    Hu, C., He, S., Jiang, S., Chen, S., Hou, H.: Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Adv. 5, 14441 (2015)CrossRefGoogle Scholar
  70. 70.
    He, S., Hu, C., Hou, H., Chen, W.: Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources 246, 754 (2014)CrossRefGoogle Scholar
  71. 71.
    He, S., Chen, W.: Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J. Power Sources 294, 150 (2015)CrossRefGoogle Scholar
  72. 72.
    Cai, J., Xiong, H., Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Lin, T., Xie, Z.: High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Interfaces 7, 14946 (2015)CrossRefGoogle Scholar
  73. 73.
    Kuzmenko, V., Naboka, O., Staaf, H., Haque, M., Goeransson, G., Lundgren, P., Gatenholm, P., Enoksson, P.: Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater. Chem. Phys. 160, 59 (2015)CrossRefGoogle Scholar
  74. 74.
    Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De, H.-D.R.D.A., Eichhorn, S.J.: Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 5, 9983 (2013)CrossRefGoogle Scholar
  75. 75.
    Kuzmenko, V., Naboka, O., Haque, M., Staaf, H., Goeransson, G., Gatenholm, P., Enoksson, P.: Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy (Oxford, U.K.) 90, 1490 (2015)Google Scholar
  76. 76.
    Chen, L.-F., Huang, Z.-H., Liang, H.-W., Yao, W.-T., Yu, Z.-Y., Yu, S.-H.: Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331 (2013)CrossRefGoogle Scholar
  77. 77.
    Yu, W., Lin, W., Shao, X., Hu, Z., Li, R., Yuan, D.: High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 272, 137 (2014)CrossRefGoogle Scholar
  78. 78.
    Chen, L.-F., Huang, Z.-H., Liang, H.-W., Gao, H.-L., Yu, S.-H.: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104 (2014)CrossRefGoogle Scholar
  79. 79.
    Chen, L.-F., Huang, Z.-H., Liang, H.-W., Guan, Q.-F., Yu, S.-H.: Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25, 4746 (2013)CrossRefGoogle Scholar
  80. 80.
    Long, C., Qi, D., Wei, T., Yan, J., Jiang, L., Fan, Z.: Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24, 3953 (2014)CrossRefGoogle Scholar
  81. 81.
    Shopsowitz, K.E., Hamad, W.Y., MacLachlan, M.J.: Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew. Chem. Int. Ed. 50, 10991 (2011)CrossRefGoogle Scholar
  82. 82.
    Yang, X., Cranston, E.D., Shi, K., Zhitomirsky, I.: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27, 6104 (2015)CrossRefGoogle Scholar
  83. 83.
    Silva, R., Pereira, G.M., Voiry, D., Chhowalla, M., Asefa, T.: Co3O4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Adv. 5, 49385 (2015)CrossRefGoogle Scholar
  84. 84.
    Wu, X., Shi, Z., Tjandra, R., Cousins, A.J., Sy, S., Yu, A., Berry, R.M., Tam, K.C.: Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes. J. Mater. Chem. A 3, 23768 (2015)CrossRefGoogle Scholar
  85. 85.
    Deng, J., Xiong, T., Xu, F., Li, M., Han, C., Gong, Y., Wang, H., Wang, Y.: Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053 (2015)CrossRefGoogle Scholar
  86. 86.
    Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R., Yushin, G.: Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 1, 356 (2011)CrossRefGoogle Scholar
  87. 87.
    Huang, J., Wang, J., Wang, C., Zhang, H., Lu, C., Wang, J.: Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107 (2015)CrossRefGoogle Scholar
  88. 88.
    Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A., Chen, Y.: Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013)Google Scholar
  89. 89.
    Singsang, W., Panapoy, M., Ksapabutr, B.: Facile one-pot synthesis of freestanding carbon nanotubes on cellulose-derived carbon films for supercapacitor applications: effect of the synthesis temperature. Energy Procedia 56, 439 (2014)CrossRefGoogle Scholar
  90. 90.
    Raymundo-Pinero, E., Gao, Q., Beguin, F.: Carbons for supercapacitors obtained by one-step pressure induced oxidation at low temperature. Carbon 61, 278 (2013)CrossRefGoogle Scholar
  91. 91.
    Yun, Y.S., Shim, J., Tak, Y., Jin, H.-J.: Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates. RSC Adv. 2, 4353 (2012)CrossRefGoogle Scholar
  92. 92.
    Babel, K., Jurewicz, K.: Electrical capacitance of fibrous carbon composites in supercapacitors. Fuel Process. Technol. 77–78, 181 (2002)CrossRefGoogle Scholar
  93. 93.
    Qu, J., Geng, C., Lv, S., Shao, G., Ma, S., Wu, M.: Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 176, 982 (2015)CrossRefGoogle Scholar
  94. 94.
    Wahid, M., Parte, G., Fernandes, R., Kothari, D., Ogale, S.: Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Adv. 5, 51382 (2015)CrossRefGoogle Scholar
  95. 95.
    Fan, Y., Yang, X., Zhu, B., Liu, P.-F., Lu, H.-T.: Micro-mesoporous carbon spheres derived from Carrageenan as electrode material for supercapacitors. J. Power Sources 268, 584 (2014)CrossRefGoogle Scholar
  96. 96.
    Sethuraman, B., Purushothaman, K.K., Muralidharan, G.: Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Adv. 4, 4631 (2014)CrossRefGoogle Scholar
  97. 97.
    Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., Cai, H., Liu, H., Wong, C.P., Umar, A.: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120 (2014)CrossRefGoogle Scholar
  98. 98.
    Wang, H., Li, Z., Tak, J.K., Holt, C.M.B., Tan, X., Xu, Z., Amirkhiz, B.S., Harfield, D., Anyia, A., Stephenson, T., Mitlin, D.: Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 57, 317 (2013)CrossRefGoogle Scholar
  99. 99.
    Falco, C., Sieben, J.M., Brun, N., Sevilla, M., van der Mauelen, T., Morallon, E., Cazorla-Amoros, D., Titirici, M.-M.: Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6, 374 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Soon Yee Liew
    • 1
  • Wim Thielemans
    • 2
  • Stefan Freunberger
    • 3
  • Stefan Spirk
    • 4
    • 5
  1. 1.Division of Manufacturing and Process Technologies, Faculty of EngineeringUniversity of NottinghamNottinghamUK
  2. 2.Renewable Materials and Nanotechnology Research GroupKU LeuvenKortrijkBelgium
  3. 3.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  4. 4.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  5. 5.Institute for the Engineering and Design of MaterialsUniversity of MariborMariborSlovenia

Personalised recommendations