Skip to main content

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 9))

  • 885 Accesses

Abstract

Nano-technology is rapidly maturing to help realize bio-chemical sensors that can be implanted in human body with integrated transceivers to share symptoms’ data with each other internally to the body, and with outside world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad A (2013) A scalable human body modeling technique for networkable implants. In: Proceedings of the 9th international conference on body area networks, Boston MA, September–October 2013

    Google Scholar 

  2. Sarkar TK, Ji Z, Kim K, Medouri A, Salazar-Palma M (2003) A survey of various propagation models for mobile communication. Antennas Propag Mag IEEE 45(3):51–82

    Google Scholar 

  3. Chen AM, Rao RR (1998) On tractable wireless channel models. In: The ninth IEEE international symposium on personal, indoor and mobile radio communications, 1998, vol 2, pp 825–830

    Google Scholar 

  4. Jensen MA, Wallace JW (2004) A review of antennas and propagation for MIMO wireless communications. IEEE Trans Antennas Propag 52(11)

    Google Scholar 

  5. Schwiebert L, Gupta SKS, Weinmann J (2001) Research challenges in wireless networks of biomedical sensors. In: Proceedings of the 7th annual international conference on Mobile computing and networking, July 2001, Rome, Italy, pp 151–165

    Google Scholar 

  6. Heetderks WJ (1988) RF powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans Biomed Eng 35(5):323–327

    Google Scholar 

  7. Wegmueller MS, Kuhn A, Froehlich J, Oberle M, Felber N, Kuster N, Wolfgang F (2007) An attempt to model the human body as a communication channel. IEEE Trans Biomed Eng 54(10):1851–1857

    Google Scholar 

  8. Gupta SKS, Lalwani S, Prakash Y, Elsharawy E, Schwiebert L (2003) Towards a propagation model for wireless biomedical applications. IEEE international conference on communications, 2003. ICC ‘03, vol 3, 11–15 May 2003, pp 1993–1997

    Google Scholar 

  9. Kwak K-S, Ullah S, Ullah N (2010) An overview of IEEE 802.15.6 standard. In: 2010 3rd international symposium on applied sciences in biomedical and communication technologies (ISABEL), 7–10 November 2010, pp 1–6

    Google Scholar 

  10. De Santis V, Feliziani M (2011) Intra-body channel characterization of medical implant devices. In: EMC Europe 2011 York, 26–30 September 2011, pp 816–819

    Google Scholar 

  11. Tayamachi T, Wang Q, Wang J (2007) Transmission characteristic analysis for UWB body area communications. In: International symposium on electromagnetic compatibility, 2007. EMC 2007, 23–26 October 2007, pp 75–78

    Google Scholar 

  12. Galluccio L, Melodiay T, Palazzo S, Santagati GE (2012) Challenges and implications of using ultrasonic communications in intra-body area networks. In: Proceedings of the 9th annual conference on wireless on-demand network systems and services (WONS), pp 182–189

    Google Scholar 

  13. Geng Y, Wan Y, He J, Pahlavan K (2013) An empirical channel model for the effect of human body on ray tracing. In: 2013 IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC). IEEE, pp 47–52

    Google Scholar 

  14. Hasler N, Stoll C, Sunkel M, Rosenhahn B, Seidel H-P (2009) A statistical model of human pose and body shape. In: EUROGRAPHICS 2009, vol 28, no 2

    Google Scholar 

  15. Yazdandoost KY (2009) Channel model for body area network (BAN). In: IEEE P802.15–08-0780-09-0006, April 27, 2009

    Google Scholar 

  16. Gabriel C, Gabriely S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  Google Scholar 

  17. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Comput IEEE 4(1):18–27. doi:10.1109/MPRV.2005.9

  18. Wu X, Ma L, Huang KS, Gao Y, Chen Z (2005) Generic-model based human-body modeling. In: Entertainment computing ICEC 2005, Lecture notes in computer science, vol 3711, pp 203–214

    Google Scholar 

  19. Hagedorn J, Sayrafian-Pour K, Yang W-B, Terill JE (2015) (NIST staff), Visualization of body area networks. http://www.nist.gov/itl/math/hpcvg/ban.cfm. Accessed 12 Feb 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmad, A. (2017). Digital Body. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics