Skip to main content

Electromagnetic Nanonetworks for Sensing and Drug Delivery

  • Chapter
  • First Online:
Book cover Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Abstract

The use of nanodevices for biomedical applications has recently been object of study by researchers. Novel prospectives can be envisaged in the field of nanomedicine, also supported by innovative nanodevices with specific properties. In this chapter, we present the electromagnetic properties of different metal nanoparticles (i.e., nanocube, nanocylinder, nanorod, bow-tie, biconical nanoparticle, etc.), opportunely functionalized for sensing applications, as well as drugged with medicament to be released to specific locations, for innovative therapeutic treatments. After modeling the design of such nanoparticles, we investigate the channel model adopted in electromagnetic nanonetworks. Basically, we focus on the nanoparticle transmission, diffusion and reception processes, both for extra- and in-vivo applications i.e., for the detection of target cells in a biological tissue sample, and for drug delivery via nanoparticle adsorption, respectively. Numerical results obtained through full-wave simulations have shown the effectiveness of electromagnetic nanoparticles for specific biomedical applications (e.g., DNA alteration detection). Finally, we highlight that in this chapter the electromagnetic properties that are described are used for sensing and drug delivery, and not for communication among nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freitas RA Jr (2005) “What is nanomedicine?”, nanomedicine: nanotechnology. Biol Med 1(1):2–9

    MathSciNet  Google Scholar 

  2. Freitas RA (1999) Nanomedicine, Volume I: basic capabilities, landes bioscience, Georgetown, TX

    Google Scholar 

  3. Akyildiz IF, Jornet JM (2010) Electromagnetic wireless nanosensor networks. Nano Commun Netw 1:3–19

    Article  Google Scholar 

  4. Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25

    Google Scholar 

  5. Akyildiz IF, Jornet JM, Pierobon M (2011) Nanonetworks: a new frontier in communications. Commun ACM 54(11):84–89

    Article  Google Scholar 

  6. Akyildiz IF, Brunetti F, Blzquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52(12):2260–2279

    Article  Google Scholar 

  7. Jornet JM, Akyildiz IF (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: Proceedings of the IEEE international conference on communications, ICC 2010, Cape Town, South Africa, May 2010

    Google Scholar 

  8. Wang X, Lou X, Wang Y, Guo Q, Fang Z, Zhong X, Mao H, Jin Q, Wu L, Zhao H, Zhao J (2010) QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosens Bioelectron 25(8):1934–1940

    Article  Google Scholar 

  9. Abraham A, Kannangai R, Sridharan G (2008) Nanotechnology: a new frontier in virus detection in clinical practice. Indian J Med Microbiol 26(4):297–301

    Article  Google Scholar 

  10. Akyildiz IF, Fekri F, Sivakumar R, Forest CR, Hammer BR (2012) Monaco: fundamentals of molecular nano-communication networks. IEEE Wirel Commun 19(5):12–18

    Article  Google Scholar 

  11. Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221

    Article  Google Scholar 

  12. Jornet JM, Akyildiz IF (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: Proceedings of the IEEE international conference on communications (ICC 2011), June 5–9, Kyoto, Japan

    Google Scholar 

  13. Jornet JM, Akyildiz IF (2011) PHALME: a physical layer aware mac protocol for electromagnetic nanonetworks. In: Proceedings of the IEEE international conference on communications (ICC 2011), June 5–9, Kyoto, Japan

    Google Scholar 

  14. Jornet JM, Akyildiz IF (2012) Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Trans Wirel Commun 11(3):570–580

    Google Scholar 

  15. Svenson S, Prud’homme RK (2012) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Springer

    Google Scholar 

  16. Swami A, Shi J, Gadde S, Votruba A, Kolishetti N, Farokhzad O (2012) Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson S, Prud’homme R (eds) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and deliver. Springer

    Google Scholar 

  17. Zhou Y, Kong Y, Kundu S, Cirillo J, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against escherichia coli and bacillus calmette-gurin. J Nanobiotechnol 10

    Google Scholar 

  18. Hossen M, Kajimoto K, Akita H, Hyodo M, Harashima H (2012) Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J Control Release 163:101–110

    Article  Google Scholar 

  19. Vllasaliu D, Alexander C, Garnett M, Eaton M, Stolnik S (2012) Fc-mediated transport of nanoparticles across airway epithelial cell layers. J Control Release 158:479–486

    Article  Google Scholar 

  20. Bhumkar D, Joshi H, Sastry M, Pokharkar V (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24

    Google Scholar 

  21. Cavalcanti A, Shirinzade B, Freitas RA, Hogg T (2008) Nanorobot architecture for medical target identification. Nanotechnology 19(1)

    Google Scholar 

  22. Chahibi Y, Pierobon M, Song S, Akyildiz I (2013) A molecular communication system model for particulate drug delivery systems. IEEE Trans Biomed Eng

    Google Scholar 

  23. Nakano T, Moore MJ, Okaie Y, Enomoto A, Suda T (2012) Swarming biological nanomachines through molecular communication for targeted drug delivery. In: Proceedings of IEEE conference on soft computing and intelligent systems and symposium on advanced intelligent systems, November 2012

    Google Scholar 

  24. Loscrì V, Natalizio E, Mannara V, Aloi G (2012) A novel communication technique for nanobots based on acoustic signals. In: Proceedings of the 7th international conference on bio-inspired models of network, information, and computing systems, ser. Bionetics’12, Lugano, Switzerland

    Google Scholar 

  25. Iovine R, Loscrì V, Pizzi S, Tarparelli R, Vegni AM (2013) Model of multi-source nanonetworks for the detection of BRCA1 DNA alterations based on LSPR phenomenon. Adv Nanoparticles 2(4):301–312

    Article  Google Scholar 

  26. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282

    Article  Google Scholar 

  27. Kumar A, Boruah BM, Ling X-J (2011) Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomaterials 2011:1–17

    Google Scholar 

  28. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361

    Article  Google Scholar 

  29. Cho EC, Glaus C, Chen J, Welch MJ, Xia X (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573

    Article  Google Scholar 

  30. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechonology 2008(1):17–32

    Google Scholar 

  31. Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: theoretical principles. Biochimica and Biophysica Acta 1331(2):117–129

    Article  Google Scholar 

  32. Sagle LB, Ruvuna LK, Ruemmele JA, Van Duyne RP (2011) Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6(8):1447–1462

    Article  Google Scholar 

  33. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  Google Scholar 

  34. Van Bladel JG (2007) Electromagnetic fields. Wiley, Hoboken

    Book  Google Scholar 

  35. La Spada L, Iovine R, Vegni L (2012) Nanoparticle electromagnetic properties for sensing applications. Adv Nanoparticles 1:9–14

    Article  Google Scholar 

  36. Iovine R, La Spada L, Vegni L (2013) Nanoparticle device for biomedical and optoelectronics applications. COMPEL 32(5):1596–1608

    Article  Google Scholar 

  37. Xu X, Ying Y, Li Y (2011) Gold nanorods based lspr biosensor for label-free detection of alpha-fetoprotein. Procedia Eng 25:67–70

    Article  Google Scholar 

  38. La Spada L, Iovine R, Vegni L (2013) Electromagnetic modeling of ellipsoidal nanoparticles for sensing applications. Opt Eng 52(5):1–5

    Article  Google Scholar 

  39. Iovine R, La Spada L, Vegni L (2014) Optical properties of modified nanorod particles for biomedical sensing. IEEE Trans Magn 50(2) (to appear)

    Google Scholar 

  40. Tanaka A, Nakamura B (2012) Optical imaging: technology, methods and applications. Nova Science Publisher

    Google Scholar 

  41. Iovine R, La Spada L, Vegni L (2013) Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime. Adv Nanoparticles 2(1):21–27

    Article  Google Scholar 

  42. Suda T, Moore M, Nakano T, Egashira R, Enomoto A (2005) Exploratory research on molecular communication between nanomachines. In: Proceedings of genetic and evolutionary computation conference, (GECCO’05). ACM

    Google Scholar 

  43. Atakan B, Akan OB (2008) On molecular multiple-access, broadcast, and relay channels in nanonetworks. In: Proceedings of the ICST/ACM Conference BIONETICS 2008, Japan, Nov 25–28, 2008

    Google Scholar 

  44. Einolghozati A, Sardari M, Beirami A, Fekri F (2011) Capacity of discrete molecular diffusion channels. In: Proceedings of international symposium on information theory (ISIT 2011), Saint Petersburg, Russia, July 2011

    Google Scholar 

  45. Keramidas A, Moorhouse AJ, Schofield PR, Barry PH (2004) Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86(2):161–204

    Article  Google Scholar 

  46. Model MA, Omann GM (1995) Ligand-receptor interaction rates in the presence of convective mass transport. Biophys J 69(5):1712–1720

    Article  Google Scholar 

  47. Atakan B, Akan OB (2008) On channel capacity and error compensation in molecular communication. Trans Comput Syst Biol X 59–80

    Google Scholar 

  48. Yilmaz HB, Kim N-R, Chae C-B (2014) Effect of ISI mitigation on modulation techniques in communication via diffusion. In: Proceedings of 1st ACM international conference on nanoscale computing and communication, Atlanta, May 13–14, 2014

    Google Scholar 

  49. Atakan B, Akan OB (2010) Deterministic capacity of information flow in molecular nanonetworks. Nano Commun Netw (Elsevier) 1(1):31–42

    Article  Google Scholar 

  50. Pierobon M, Akyildiz I (2010) A physical end-to-end model for molecular communication in nanonetworks. IEEE J Sel Areas Commun 28(4):602–611

    Article  Google Scholar 

  51. Nakano T, Okaie Y, Liu J-Q (2012) Channel model and capacity analysis of molecular communication with brownian motion. IEEE Commun Lett 16(6)

    Google Scholar 

  52. Redner S (2001) A guide to first-passage processes. Cambridge University Press

    Google Scholar 

  53. Llatser I, Alarcòn E, Pierobon M (2011) Diffusion-based channel characterization in molecular nanonetworks. In: Proceedings of IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp 467–472, 10–15 April 2011

    Google Scholar 

  54. Kadouri L, Hubert A, Rotenberg Y, Hamburger T, Sagi M, Nechushtan C, Abeliovich D, Peretz T (2007) Cancer risks in carriers of the BRCA1/2 ashkenazi founder mutations. J Med Genet 44(7):467–471

    Article  Google Scholar 

  55. Thompson D, Easton D, Consortium BCL (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94(18):1358–1365

    Google Scholar 

  56. Li YY, Dong HQ, Wang K, Shi DL, Zhang XZ, Zhuo RX (2010) Stimulus-responsive polymeric nanoparticles for biomedical applications. Sci China Chem 53(3):447–457

    Article  Google Scholar 

  57. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliver Rev 58(15):1655–1670

    Article  Google Scholar 

  58. Suchaoin N, Chirachanchai S, Perrier S (2009) PH- and thermo-multi-responsive fluorescent micelles from block copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer 50(17):4151–4158

    Article  Google Scholar 

  59. Zhang QS, Zha LS, Ma JH, Liang BR (2009) A novel route to prepare pH− and temperature-sensitive nanogels via a semibatch process. J. Colloid Interf Sci 330(2):330–336

    Article  Google Scholar 

  60. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control Release 126(3):187–204

    Article  Google Scholar 

  61. Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18(24):3321–3328

    Article  Google Scholar 

  62. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8–9):962–990

    Article  Google Scholar 

  63. Sun L, Yu C, Irudayaraj J (2008) Raman multiplexers for alternative gene splicing. Anal Chem 80(9):3342–3349

    Article  Google Scholar 

  64. Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press

    Google Scholar 

  65. Parcerisa L, Akyildiz IF (2009) Molecular communication options for long range nanonetworks. Comput Netw J 53(16): 2753–2766 (Elsevier)

    Google Scholar 

  66. Kuran MS, Yilmaz HB, Tugcu T, Akyildiz IF (2012) Interference effects on modulation techniques in diffusion based nanonetworks. Nano Commun Netw 3(1):65–73 (Elsevier)

    Google Scholar 

  67. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  Google Scholar 

  68. Atakan B, Akan OB (2007) An information theoretical approach for molecular communication. In: Proceedings of 2nd bio-inspired models of network, information and computing systems, bionetics 2007, pp 33–40, 10–12 Dec 2007

    Google Scholar 

  69. Rospars J-P, Krivan V, Lansky P (2000) Perireceptor and receptor events in olfaction. comparison of concentration and flux detectors: a modeling study. Chem Senses 25:293–311

    Article  Google Scholar 

  70. Hong SW, Kim DY, Lee JU, Jo WH (2009) Synthesis of polymeric temperature sensor based on photophysical property of fullerene and thermal sensitivity of poly(N-isopropylacrylamide). Macromolecules 42:2756–2761

    Article  Google Scholar 

  71. Lee J-H, Jang J-T, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol Lett 6:418–422

    Article  Google Scholar 

  72. Li YY, Zhang XZ, Cheng H, Kim GC, Cheng SX, Zhuo RX (2006) Novel stimuli-responsive micelle self-assembled from Y—shaped P(UA-Y—NIPAAm) copolymer for drug delivery. Biomacromolecules 7(11):2956–2960

    Article  Google Scholar 

  73. Soppimath KS, Tan DCW, Yang YY (2005) PH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv Mater 17(3):318–323

    Article  Google Scholar 

  74. Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9(4):367–394

    Article  Google Scholar 

  75. Cid-Fuentes RG, Jornet JM, Akyildiz IF, Alarcon E (2012) Receiver architecture for pulse-based electromagnetic nanonetworks in the terahertz band. In: Proceedings of international conference on communications, Ottawa, Canada, June 10–15

    Google Scholar 

  76. Docherty FT, Clark M, McNay G, Graham D, Smith WE (2003) Multiple labelled nanoparticles for bio detection. Faraday Discuss 126:281–288

    Article  Google Scholar 

  77. Zhou W, Ma Y, Yang H, Ding Y, Luo X (2011) A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int J Nanomed 2011(6):381–386

    Article  Google Scholar 

  78. Tan YN, Su X, Zhu Y, Lee JY (2010) Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements. ACS Nano 4(9):5101–5110

    Article  Google Scholar 

  79. Rana S, Bajaj A, Mout R, Rotello VM (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64(2):200–216

    Article  Google Scholar 

  80. Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3(1):80–86

    Article  Google Scholar 

  81. Iovine R, Tarparelli R, Vegni AM (2013) Detection of DNA alterations using gold nanoparticles exploiting the LSP phenomenon. In: Proceedings of 21st IEEE international conference on applied electromagnetics and communications (ICECOM), Dubrovnick, Croatia, Oct 14–16, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Loscrì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Iovine, R., Loscrì, V., Pizzi, S., Tarparelli, R., Vegni, A.M. (2017). Electromagnetic Nanonetworks for Sensing and Drug Delivery. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics