Advertisement

Fundamentals of Graphene-Enabled Wireless On-Chip Networking

  • Sergi Abadal
  • Ignacio Llatser
  • Albert Mestres
  • Josep Solé-Pareta
  • Eduard Alarcón
  • Albert Cabellos-Aparicio
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 9)

Abstract

In the broad sense of the term, nanonetworks may refer not just to networks composed of nanosized devices, but also to communication networks enabled by nanotechnology. Nanoscale communication techniques can be suitable to interconnect elements far larger than a few square micrometers in applications subject to strong size constraints or bandwidth requirements. Here, the concept Graphene-enabled Wireless Network-on-Chip (GWNoC) is introduced as a clear example of this category. In GWNoC, graphene plasmonic antennas are used to wirelessly communicate the components of a multicore processor, which are located in the same chip. This shared medium approach is opposed to current chip communication trends and aims to reduce many of the issues that hamper the development of scalable multiprocessor architectures. In this chapter, we describe the scenario and the communication requirements that justify the employment of nanonetworking techniques, as well as the main challenges that still need to be overcome in this new research avenue.

Keywords

Medium Access Control Medium Access Control Protocol Forward Error Correction Network Interface Radiation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    802.15.3c-Part 15.3 (2009) Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs)—Amendment 2: Millimeter-wave-based alternative physical layer extensionGoogle Scholar
  2. 2.
    Abadal S, Alarcón E, Lemme MC, Nemirovsky M, Cabellos-Aparicio A (2013) Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun Mag 51(11):137–143CrossRefGoogle Scholar
  3. 3.
    Abadal S, Cabellos-Aparicio A, Lázaro JA, Nemirovsky M, Alarcón E, Solé-Pareta J (2013) Area and laser power scalability analysis in photonic networks-on-chip. In: Proceedings of the ONDM ’13Google Scholar
  4. 4.
    Abadal S, Iannazzo M, Nemirovsky M, Cabellos-Aparicio A, Alarcon E (2015) On the area and energy scalability of wireless network-on-chip: a model-based benchmarked design space exploration. IEEE/ACM Trans Netw 23(5):1501–1513Google Scholar
  5. 5.
    Abadal S, Llatser I, Mestres A, Lee H, Alarcón E, Cabellos-Aparicio A (2015) Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications. IEEE Trans Commun 63(4):1470–1482Google Scholar
  6. 6.
    Abadal S, Martínez R, Solé-Pareta J, Alarcón E, Cabellos-Aparicio A (2016) Characterization and modeling of multicast communication in cache-coherent manycore processors. Comput Electr Eng (51):168–183Google Scholar
  7. 7.
    Arslan H, Chen Z, Benedetto MD (2006) Ultra wideband wireless communicationGoogle Scholar
  8. 8.
    Beausoleil RG, Kuekes PJ, Snider GS, Wang, SY, Williams RS (2008) Nanoelectronic and Nanophotonic Interconnect. Proc IEEE 96(2):230–247Google Scholar
  9. 9.
    Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. Computer 35(1):70–78Google Scholar
  10. 10.
    Bienia C, Kumar S, Singh JP, Li K (2008) The parsec benchmark suite: characterization and architectural implications. In: Proceedings of the PACT ’08, pp 72–81. ACMGoogle Scholar
  11. 11.
    Binkert N, Sardashti S, Sen R, Sewell K, Shoaib M et al (2011) The gem5 simulator. ACM SIGARCH Comput Arch News 39(2):1CrossRefGoogle Scholar
  12. 12.
    Burns J, McIlrath L, Keast C, Lewis C, Loomis A, Warner K, Wyatt P (2001) Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip. In: IEEE ISSCC Dig Tech Papers:268–269Google Scholar
  13. 13.
    Cai W, White J, Brongersma M (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9(12):4403–4411CrossRefGoogle Scholar
  14. 14.
    Chan J, Hendry G, Biberman A, Bergman K, Carloni LP (2010) PhoenixSim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. In: Proceedings of the DATE ’10, pp 691–696Google Scholar
  15. 15.
    Chang MCF, Verbauwhede I, Chien C, Xu Z, Kim J, Ko J, Gu Q, Lai BC (2005) Advanced RF/baseband interconnect schemes for inter- and intra-ULSI communications. IEEE Trans Electron Devices 52(7):1271–1285CrossRefGoogle Scholar
  16. 16.
    Chang MF, Cong J, Kaplan A, Naik M, Reinman G, Socher E, Tam SW (2008) CMP Network-on-chip overlaid with multi-band RF-interconnect. In: Proceedings of the HPCA ’08, pp 191–202Google Scholar
  17. 17.
    David Culler AG (1999) Parallel computer architecture: a hardware/software approachGoogle Scholar
  18. 18.
    Deb S, Ganguly A, Pande PP, Belzer B, Heo D (2012) Wireless NoC as interconnection backbone for multicore chips: promises and challenges. IEEE J Emerg Sel Topics Circuits Syst (JETCAS) 2(2):228–239CrossRefGoogle Scholar
  19. 19.
    DiTomaso D, Kodi A, Matolak D (2013) Energy-efficient adaptive wireless NoCs architecture. In: Proceedings of the NoCS ’13, pp 1–8Google Scholar
  20. 20.
    Enright Jerger N, Peh LS, Lipasti M (2008) Virtual circuit tree multicasting: a case for on-chip hardware multicast support. In: Proceedings of the ISCA-35, pp 229–240Google Scholar
  21. 21.
    Feero BS, Pande PP (2009) Networks-on-Chip in a three-dimensional environment: a performance evaluation. IEEE Trans Comput 58(1):32–45MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ganguly A, Chang K, Deb S, Pande PP, Belzer B, Teuscher C (2010) Scalable hybrid wireless network-on-chip architectures for multi-core systems. IEEE Trans Comput 60(10):1485–1502CrossRefGoogle Scholar
  23. 23.
    Gorisse J, Morche D, Jantunen J (2012) Wireless transceivers for gigabit-per-second communications. In: Proceedings of the NEWCAS ’12, pp 545–548Google Scholar
  24. 24.
    Grischkowsky D, Keiding S, van Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am 7(10):2006–2015Google Scholar
  25. 25.
    Han SJ, Garcia AV, Oida S, Jenkins KA, Haensch W (2014) Graphene radio frequency receiver integrated circuit. Nat Commun 5Google Scholar
  26. 26.
    Hanson GW (2008) Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Graphene. IEEE Transactions on Antennas and Propagation 56(3):747–757CrossRefGoogle Scholar
  27. 27.
    Hennessy J, Patterson D (2012) Computer architecture: a quantitative approachGoogle Scholar
  28. 28.
    Hesse R, Nicholls J, Jerger NE (2012) Fine-grained bandwidth adaptivity in networks-on-chip using bidirectional channels. In: Proceedings of the NoCS ’12, pp 132–141. IEEEGoogle Scholar
  29. 29.
    Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz mesh interconnect for a teraflops processor. IEEE Micro 27(5):51–61CrossRefGoogle Scholar
  30. 30.
    Huang W, Rajamani K, Stan M, Skadron K (2011) Scaling with design constraints: predicting the future of big chips. IEEE Micro:16–29Google Scholar
  31. 31.
    Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221CrossRefGoogle Scholar
  32. 32.
    Jornet JM, Akyildiz IF (2013) Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE J Sel Areas Commun 31(12):685–694CrossRefGoogle Scholar
  33. 33.
    Kahng A, Li B, Peh L, Samadi K (2009) Orion 2.0: A fast and accurate noc power and area model for early-stage design space exploration. In: Proceedings of the DATE ’09Google Scholar
  34. 34.
    Kim M, Rieh JS, Jeon S (2012) Recent progress in terahertz monolithic integrated circuits. In: Proceedings of the ISCAS ’12, pp 746–749Google Scholar
  35. 35.
    Krishna T, Peh LS (2011) Towards the ideal on-chip fabric for 1-to-many and many-to-1 communication. In: Proceedings of the MICRO-44, pp 71–82Google Scholar
  36. 36.
    Kurian G, Miller J, Psota J, Eastep J et al (2010) ATAC: A 1000-Core Cache-Coherent Processor with On-Chip Optical Network. In: Proceedings of the PACT ’10Google Scholar
  37. 37.
    Kürner T, Priebe S (2013) Towards THz communications—status in research, standardization and regulation. J Infrared, Millimeter Terahertz Waves 35(1):53–62CrossRefGoogle Scholar
  38. 38.
    Lee SB, Tam SW, Pefkianakis I, Lu S et al (2009) A scalable micro wireless interconnect structure for CMPs. In: Proceedings of the Mobicom ’09, p 217Google Scholar
  39. 39.
    Llatser I, Kremers C, Cabellos-Aparicio A, Jornet JM, Alarcón E, Chigrin DN (2012) Graphene-based nano-patch antenna for terahertz radiation. Photonics Nanostruct: Fund Appl 10(4):353–358CrossRefGoogle Scholar
  40. 40.
    Llatser I, Kremers C, Chigrin D, Jornet JM, Lemme MC, Cabellos-Aparicio A, Alarcón E (2012) Radiation characteristics of tunable graphennas in the terahertz band. Radioeng J 21(4)Google Scholar
  41. 41.
    Llatser I, Mestres A, Abadal S, Alarcón E, Lee H, Cabellos-Aparicio A (2015) Time and frequency domain analysis of molecular absorption in short-range terahertz communications. IEEE Antennas Wirel Propag Lett 14:350–353Google Scholar
  42. 42.
    Matolak D, Kaya S, Kodi A (2013) Channel modeling for wireless networks-on-chips. IEEE Commun Mag 51(6):180–186CrossRefGoogle Scholar
  43. 43.
    Matolak D, Kodi A, Kaya S, DiTomaso D, Laha S, Rayess W (2012) Wireless networks-on-chips: architecture, wireless channel, and devices. IEEE Wireless Commun 19(5):58–65CrossRefGoogle Scholar
  44. 44.
    Miller DAB (2009) Device requirements for optical interconnects to silicon chips. Proc IEEE 97(7):1166–1185CrossRefGoogle Scholar
  45. 45.
    Novack A, Liu Y, Ding R, Gould M, Baehr-jones T, Li Q, Yang Y, Zhang Y, Padmaraju K, Bergmen K, Lim AEJ, Lo GQ, Hochberg M (2013) A 30 GHz silicon photonic platform. In: Proceedings of the SPIE—Integrated optics: physics and simulations, vol 8781Google Scholar
  46. 46.
    O KK, Kim K, Floyd B, Mehta J, Yoon H, Hung CM, Bravo D, Dickson T, Guo X, Li R, Trichy N, Caserta J, Yang D, Bohorquez J, Seok E, Gao L, Sugavanam A, Lin JJ, Chen J, Brewer, JE (2005) On-chip antennas in silicon ICs and their application. IEEE Trans Electron Devices 52(7):1312–1323Google Scholar
  47. 47.
    Öjefors E, Grzyb J, Heinemann B, Tillack B, Pfeiffer UR (2011) A 820 GHz SiGe chipset for terahertz active imaging applications. In: Proceedings of the ISSCC ’11, pp 224–225Google Scholar
  48. 48.
    Park JD, Kang S, Thyagarajan S, Alon E, Niknejad A (2012) A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. In: Proceedings of the VLSIC ’12, pp 48–49Google Scholar
  49. 49.
    Pande P, Grecu P, Jones C, Ivanov M, Saleh A (2005) Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans Comput 54(8):1025–1040Google Scholar
  50. 50.
    Rodrigo S, Flich J, Duato J, Hummel M (2008) Efficient unicast and multicast support for CMPs. In: Proceedings of the MICRO-41 pp 364–375Google Scholar
  51. 51.
    Ronne C, Thrane L, AŁstrand PO, Wallqvist A et al (1997) Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J Chem Phys 107(14):5319Google Scholar
  52. 52.
    Schinkel D, Mensink E (2009) Low-power, high-speed transceivers for network-on-chip communication. IEEE Trans VLSI Syst 17(1):12–21CrossRefGoogle Scholar
  53. 53.
    Seok E, Shim D, Mao C, Han R, Sankaran S, Cao C, Knap W (2010) Progress and challenges towards terahertz CMOS integrated circuits. IEEE J Solid-State Circuits 45(8):1554–1564CrossRefGoogle Scholar
  54. 54.
    Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57(9):1246–1260MathSciNetCrossRefGoogle Scholar
  55. 55.
    Socher E, Chang MCF (2007) Can RF Help CMOS processors? IEEE Commun Mag 45(8):104–111CrossRefGoogle Scholar
  56. 56.
    Soteriou V, Wang H, Peh LS (2006) A statistical traffic model for on-chip interconnection networks. In: Proceedings of the MASCOTS ’06Google Scholar
  57. 57.
    Stallo C, Mukherjee S (2010) IR-UWB for high bit rate communications beyond 60 GHz. In: Proceedings of the PIMRC ’10Google Scholar
  58. 58.
    Sun C, Chen C, Kurian G (2012) DSENT—a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling. In: Proceedings of the NoCS ’12, pp 201–210Google Scholar
  59. 59.
    Tamagnone M, Gomez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys 112:114, 915Google Scholar
  60. 60.
    Tamagnone M, Gomez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012)Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101(21), 214, 102Google Scholar
  61. 61.
    Urkowitz H (1967) Energy detection of unknown deterministic signals. Proc IEEE 55(4)Google Scholar
  62. 62.
    Vantrease D, Schreiber R, Monchiero M, McLaren M, Jouppi N, Fiorentino M, Davis A, Binkert N, Beausoleil R, Ahn J (2008) Corona: system implications of emerging nanophotonic technology. ACM SIGARCH Comput Architect News 36(3):153–164CrossRefGoogle Scholar
  63. 63.
    Witrisal K, Leus G, Janssen GJM, Pausini M, Troesch F, Zasowski T, Romme J (2009) Noncoherent ultra-wideband systems. IEEE Signal Process Mag 26(4):48–66CrossRefGoogle Scholar
  64. 64.
    Woo S, Ohara M, Torrie E, Singh J (1995) The SPLASH-2 programs: characterization and methodological considerations. In: Proceedings of the ISCA-22, vol 23, issue no 2, pp 24–36Google Scholar
  65. 65.
    Wu Y, Farmer DB, Xia F, Avouris P (2013) Graphene electronics: materials, devices, and circuits. Proc IEEE 101(7):1620–1637CrossRefGoogle Scholar
  66. 66.
    Zhang YP, Chen ZM, Sun M (2007) Propagation mechanisms of radio waves over intra-chip channels with integrated antennas: frequency-domain measurements and time-domain analysis. IEEE Trans Antennas Propag 55(10):2900–2906CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergi Abadal
    • 1
  • Ignacio Llatser
    • 1
  • Albert Mestres
    • 1
  • Josep Solé-Pareta
    • 1
  • Eduard Alarcón
    • 1
  • Albert Cabellos-Aparicio
    • 1
  1. 1.NaNoNetworking Center in Catalunya (N3Cat), Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations