Advertisement

Automated Fingerprint Identification Systems: From Fingerprints to Fingermarks

  • Davide Maltoni
  • Raffaele Cappelli
  • Didier Meuwly
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

The aim of this chapter is to present the automated fingerprint recognition technology and its use for forensic applications. After a brief historical review, we provide an introduction to modern Automated Fingerprint Identification Systems (AFIS) by discussing their functionalities and accuracy. The topic then becomes more technical and goes through some of the recently introduced approaches for fingerprint recognition (both for fingerprint and fingermarks). Forensic applications exploiting the recognition of fingerprints (identity verification and identification) and fingermarks (forensic intelligence, investigation and evaluation) are then described. Finally, a discussion about the current topics and foreseeable challenges in terms of technology and application concludes the chapter.

Keywords

Graphic Processing Unit Crime Scene Fingermark Image Forensic Application Fingerprint Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee HC, Gaensslen RE (2001) Advances in fingerprint technology. Elsevier Publishing, New YorkCrossRefGoogle Scholar
  2. 2.
    Meuwly D (2015) Forensic use of fingermarks and fingerprints. In: Stan Z., Jain, AL (eds) Encyclopedia of biometrics, 2nd edn. SpringerGoogle Scholar
  3. 3.
    Federal Bureau of Investigation (1984) The Science of fingerprints: classification and uses. Federal Bureau of Investigation, Government Publication, Washington, DC, USGoogle Scholar
  4. 4.
    Federal Bureau of Investigation (1991) The FBI fingerprint identification automation program: issues and options. Federal Bureau of Investigation, Government Publication, Washington, DC, USGoogle Scholar
  5. 5.
    Moses KR, Higgins P, McCabe M, Prabhakar S, Swann S (2011) Automated fingerprint identification system (AFIS). In: SWGFAST—the fingerprint sourcebook, scientific working group on friction ridge analysis study and technology and national institute of Justice, pp 1–33Google Scholar
  6. 6.
    Wegstein JH, Rafferty JF, Pencak WJ (1968) Matching fingerprints by computer, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, Technical Note 466Google Scholar
  7. 7.
    Wegstein JH (1969) A computer oriented single-fingerprint identification system, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, Technical Note 443 1969Google Scholar
  8. 8.
    Wegstein JH (1970) Automated fingerprint identification, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, Technical Note 538Google Scholar
  9. 9.
    Wegstein JH (1972) Manual and automated fingerprint registration, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, NBS Technical Note 730Google Scholar
  10. 10.
    Wegstein JH (1972) The M40 fingerprint matcher, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, Technical Note 878Google Scholar
  11. 11.
    Wegstein JH, Rafferty JF (1978) The LX39 latent fingerprint matcher, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, Special Publication 500–536Google Scholar
  12. 12.
    Wegstein JH, Rafferty JF (1979) The automated identification of fingerprints. In: Dermatoglyphics—fifty years later, Washington, DCGoogle Scholar
  13. 13.
    Wegstein JH (1982) An automated fingerprint identification system, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, NBS Special Publication 500–589Google Scholar
  14. 14.
    Stoney DA (1991) What made us ever think we could individualize using statistics. J Foren Sci Soc 31(2)Google Scholar
  15. 15.
    Watson CI et al (2015) Fingerprint vendor technology evaluation 2012, NIST, NIST Interagency/Internal Report (NISTIR)—8034Google Scholar
  16. 16.
    Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition, 2nd edn. Springer, New York, NJ, USAGoogle Scholar
  17. 17.
    FBI—CJIS division (1999) Electronic fingerprint transmission specification, FBI, CJIS-RS-0010 (V7)Google Scholar
  18. 18.
    Indovina M, Hicklin RA, Kiebuzinski GI (2011) ELFT-EFS evaluation of latent fingerprint technologies: extended feature sets (Evaluation 1), National Institute of Standards and Technology, US Department of Commerce, NISTIR 7775Google Scholar
  19. 19.
    Indovina MD, Dvornychenko V, Hicklin RA, Kiebuzinski GI (2012) ELFT-EFS evaluation of latent fingerprint technologies: extended feature sets (Evaluation 2), National Institute of Standards and Technology, US Department of Commerce, NISTIR 7859Google Scholar
  20. 20.
    Jain AK, Feng J (2011) Latent fingerprint matching. IEEE Trans Pattern Anal Mach Intell 33(1):88–100CrossRefGoogle Scholar
  21. 21.
    Zhao Q, Jain AK (2010) On the utility of extended fingerprint features: a study on pores. In: CVPR workshop on biometrics, San FranciscoGoogle Scholar
  22. 22.
    Cappelli R, Ferrara M, Maltoni D (2010) Minutia Cylinder-Code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32(12):2128–2141CrossRefGoogle Scholar
  23. 23.
    Cappelli R, Ferrara M, Maio D (2012) A fast and accurate palmprint recognition system based on minutiae. IEEE Trans Syst Man Cybern Part B 42(3):956–962CrossRefGoogle Scholar
  24. 24.
    Cappelli R, Ferrara M, Maltoni D (2011) Fingerprint Indexing based on minutia cylinder code. IEEE Trans Pattern Anal Mach Intell 33(5):1051–1057CrossRefGoogle Scholar
  25. 25.
    Cappelli R, Ferrara M, Maltoni D, Tistarelli M (2010) MCC: a baseline algorithm for fingerprint verification in FVC-onGoing. In: Proceedings 11th international conference on control, automation, robotics and vision (ICARCV), SingaporeGoogle Scholar
  26. 26.
    Cappelli R, Ferrara M, Maltoni D (2015) Large-scale fingerprint identification on GPU. Inf Sci 306:1–20CrossRefGoogle Scholar
  27. 27.
    Paulino AA, Feng J, Jain AK (2013) Latent fingerprint matching using descriptor-based hough transform. IEEE Trans Inf Forensics Secur 8(1):31–45CrossRefGoogle Scholar
  28. 28.
    Si X, Feng J, Zhou J (2014) Enhancing latent fingerprints on banknotes. In: IEEE international joint conference on biometrics, Clearwater, FL, USA, pp 1–8Google Scholar
  29. 29.
    Cao K, Liu E, Jain AK (2014) Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary. IEEE Trans Pattern Anal Mach Intell 36(9):1847–1859Google Scholar
  30. 30.
    Zhang J, Lai R, Kuo C-CJ (2013) Adaptive directional total-variation model for latent fingerprint segmentation. IEEE Trans Inf Forensics Secur 8(8):1261–1273Google Scholar
  31. 31.
    Choi H, Boaventura M, Boaventura IAG, Jain AK (2012) Automatic segmentation of latent fingerprints. In: IEEE fifth international conference on biometrics: theory, applications, Arlington, VA, USA, pp 303–310Google Scholar
  32. 32.
    Zhao Q, Jain AK (2012) Model based separation of overlapping latent fingerprints. IEEE Trans Inf Forensics Secur 7(3):904–918Google Scholar
  33. 33.
    Zhang N, Zang Y, Yang X, Jia X, Tian J (2014) Adaptive orientation model fitting for latent overlapped fingerprints separation. IEEE Trans Inf Forensics Secur 9(10):1547–1556CrossRefGoogle Scholar
  34. 34.
    Feng J, Shi Y, Zhou J (2012) Robust and efficient algorithms for separating latent overlapped fingerprints. IEEE Trans Inf Forensics Secur 7(5):1498–1510CrossRefGoogle Scholar
  35. 35.
    Cappelli R, Maio D, Maltoni D (2009) Semi-automatic enhancement of very low quality fingerprint. In: 6th international symposium on image and signal processing and analysis (ISPA09), Salzburg, pp 678–683Google Scholar
  36. 36.
    Feng J, Zhou J, Jain AK (2013) Orientation field estimation for latent fingerprint enhancement. IEEE Trans Pattern Anal Mach Intell 35(4):925–940Google Scholar
  37. 37.
    Yang X, Feng J, Zhou J (2014) Localized dictionaries based orientation field estimation for latent fingerprints. IEEE Trans Pattern Anal Mach Intell 36(5):955–969CrossRefGoogle Scholar
  38. 38.
    BioLab. (2015) FVC-onGoing web site. http://biolab.csr.unibo.it/fvcongoing
  39. 39.
    Arora SS, Liu E, Cao K, Jain AK (2014) Latent fingerprint matching: performance gain via feedback from exemplar prints. IEEE Trans Pattern Anal Mach Intell 36(12):2452–2465CrossRefGoogle Scholar
  40. 40.
    Meuwly D (2014) Friction ridge skin—AFIS. In: Jamieson A, Moenssens A (eds) Encyclopedia of forensic science, Chichester, UK. WileyGoogle Scholar
  41. 41.
    Meuwly D (2010) ID management in 2020, ID.academy. The HagueGoogle Scholar
  42. 42.
    Plomp MGA, Grijpink JHAM (2011) Combating identity fraud in the public domain: information strategies for healthcare and criminal justice. In Proceedings of the 11th European conference on e-government, Ljubljana, SloveniaGoogle Scholar
  43. 43.
    Meuwly D, Veldhuis R (2012) Forensic biometrics: from two communities to one discipline. In: 2012 BIOSIG-proceedings of the international conference of the biometrics special interest group (BIOSIG), pp 207–218Google Scholar
  44. 44.
    Interpol (2009) Disaster victims identification guide. Interpol, LyonGoogle Scholar
  45. 45.
    Biedermann A, Taroni F, Margot P (2012) Reply to Budowle, Ge, Chakraborty and Gill-King: use of prior odds for missing persons identifications. Investig Genet 3:1–2Google Scholar
  46. 46.
    Budowle B, Ge J, Chakraborty R, Gill-King H (2011) Use of prior odds for missing persons identifications. Investig Genet 2:1–6CrossRefGoogle Scholar
  47. 47.
    Ribaux O, Walsh SJ, Margot P (2006) The contribution of forensic science to crime analysis and investigation: forensic intelligence. Forensic Sci Int 156:171–181CrossRefGoogle Scholar
  48. 48.
    Europol (2011) Europol information management: products and services. Europol, The HagueGoogle Scholar
  49. 49.
    Locard E (1920) L’enquête criminelle et les méthodes scientifiques. Ernst Flammarion, ParisGoogle Scholar
  50. 50.
    Langenburg GM (2012) A critical analysis and study of the ACE-V process, University of Lausanne, Switzerland, PhD thesisGoogle Scholar
  51. 51.
    Fine GE (2006) A review of the FBI’s handling of the Brandon Mayfield case, Office of the Inspector General, U.S. Department of JusticeGoogle Scholar
  52. 52.
    Dessimoz D, Champod C (2008) Linkages between biometrics and forensic science. In: Handbook of biometrics. Springer, pp. 425–459Google Scholar
  53. 53.
    Evett I (1998) Towards a uniform framework for reporting opinions in forensic science casework. Sci Justice 38(3):198–202CrossRefGoogle Scholar
  54. 54.
    Good IJ (1991) Weight of evidence and the Bayesian likelihood ratio. In: Aitken CGG, Stoney DA (eds) The use of statistics in forensic science. Ellis Horwood, Chichester UK, pp 85–106Google Scholar
  55. 55.
    Saks M, Koehler J (2005) The coming paradigm shift in forensic identification science. Science 309(5736):892–895CrossRefGoogle Scholar
  56. 56.
    Meuwly D (2006) Forensic individualisation from biometric data. Sci Justice 46(4):205–213CrossRefGoogle Scholar
  57. 57.
    Neumann C et al (2006) Computation of likelihood ratios in fingerprint identification for configurations of three minutiae. J Forensic Sci 51(6):1255–1266CrossRefGoogle Scholar
  58. 58.
    Lindley DV (1977) A problem in forensic science. Biometrika 64(2):207–213MathSciNetCrossRefGoogle Scholar
  59. 59.
    Van Leeuwen DA, Brümmer N (2007) An introduction to application-independent evaluation of speaker recognition systems. In: Speaker classification I. Springer, pp 330–353Google Scholar
  60. 60.
    Bolck A, Weyermann C, Dujourdy L, Esseiva P, van den Berg J (2009) Different likelihood ratio approaches to evaluate the strength of evidence of MDMA tablet comparisons. Forensic Sci Int 191(1):42–51CrossRefGoogle Scholar
  61. 61.
    Gonzalez-Rodriguez J, Drygajlo A, Ramos-Castro D, Garcia-Gomar M, Ortega-Garcia J (2006) Robust estimation, interpretation and assessment of likelihood ratios in forensic speaker recognition. Comput Speech Lang 20(2):331–355CrossRefGoogle Scholar
  62. 62.
    Jain A, Ross A (2015) Bridging the gap: from biometrics to forensics. In: Philosoph Trans Roy Soc B Biol Sci 370(1674)Google Scholar
  63. 63.
    Alberink I, de Jongh A (2015) Authors’ Response. J Forensic Sci 60(1):257–258CrossRefGoogle Scholar
  64. 64.
    Alberink I, de Jongh A, Rodriguez C (2014) Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios. J Forensic Sci 59(1):70–81CrossRefGoogle Scholar
  65. 65.
    Neumann C, Saunders CP (2014) Commentary on: Alberink I, de Jongh A, Rodriguez C. Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios. J Forensic Sci 59(1):70–81CrossRefGoogle Scholar
  66. 66.
    Smith ML, Noorman ME, Martin AK (2010) Automating the public sector and organizing accountabilities. Commun Assoc Inf Syst 26(1)Google Scholar
  67. 67.
    Neumann C, Evett IW, Skerrett J (2012) Quantifying the weight of evidence from a forensic fingerprint comparison: a new paradigm. J Roy Stat Soc: Ser A (Stat Soc) 175(2):371–415MathSciNetCrossRefGoogle Scholar
  68. 68.
    Neumann C (2012) Statistics and probabilities as a means to support fingerprint examination. In: Ramotowski R (ed) Lee and Gaensslen’s advances in fingerprint technology. CRC Press, pp 419–466Google Scholar
  69. 69.
    Lindoso A, Entrena L, Izquierdo J (2007) FPGA-based acceleration of fingerprint minutiae matching. In: 2007 3rd southern conference on programmable logic, 2007. SPL’07, Mar del Plata, Argentina, pp 81–86Google Scholar
  70. 70.
    Jiang RM, Crookes D (2008) FPGA-based minutia matching for biometric fingerprint image database retrieval. J Real-Time Image Proc 3(3):177–182CrossRefGoogle Scholar
  71. 71.
    Peralta D, Triguero I, Sanchez-Reillo R, Herrera F, Benitez JM (2014) Fast fingerprint identification for large databases. Pattern Recogn 47(2):588–602CrossRefGoogle Scholar
  72. 72.
    Gutierrez PD, Lastra M, Herrera F, Benitez JM (2014) A high performance fingerprint matching system for large databases based on GPU. IEEE Trans Inf Forensics Secur 9(1):62–71CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Davide Maltoni
    • 1
  • Raffaele Cappelli
    • 1
  • Didier Meuwly
    • 2
  1. 1.Ingegneria e Scienze InformaticheUniversità di BolognaCesenaItaly
  2. 2.Services, Cybersecurity and SafetyNetherlands Forensic Institute, University of TwenteNB EnschedeThe Netherlands

Personalised recommendations