Skip to main content

From Biometric Scores to Forensic Likelihood Ratios

  • Chapter
  • First Online:
Handbook of Biometrics for Forensic Science

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In this chapter, we describe the issue of the interpretation of forensic evidence from scores computed by a biometric system. This is one of the most important topics into the so-called area of forensic biometrics. We will show the importance of the topic, introducing some of the key concepts of forensic science with respect to the interpretation of results prior to their presentation in court, which is increasingly addressed by the computation of likelihood ratios (LR). We will describe the LR methodology, and will illustrate it with an example of the evaluation of fingerprint evidence in forensic conditions, by means of a fingerprint biometric system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.enfsi.eu/.

  2. 2.

    The background information about the case I will be eliminated from the notation for the sake of simplicity hereafter. It will be assumed that all the probabilities defined are conditioned to I.

  3. 3.

    Here we work at the source level, and therefore same-source scores refer to scores generated from two biometric specimens coming from the same source. They are what in biometric authentication terminology are called genuine scores.

  4. 4.

    Here we work at the source level, and therefore different-source scores refer to scores generated from two biometric specimens coming from different sources. They are what in biometric authentication terminology are called impostor scores.

  5. 5.

    Typical implementations used in biometrics include toolkits like FoCal or BOSARIS, which can be found in http://niko.brummer.googlepages.com.

  6. 6.

    We have used the implementation of this score computation system provided by the authors.

References

  1. Saks MJ, Koehler JJ (2005) The coming paradigm shift in forensic identification science. Science 309(5736):892–895

    Article  Google Scholar 

  2. Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA (1998) A model for case assessment and interpretation. Sci Justice 38:151–156

    Article  Google Scholar 

  3. Aitken CGG, Taroni F (2004) Statistics and the evaluation of evidence for forensic scientists. Wiley, Chichester

    Book  MATH  Google Scholar 

  4. Berger CA, Champod JS, Curran C, Dawid J, Kloosterman AP (2011) Expressing evaluative opinions: a position statement. Sci Justice 51:1–2. Several signatories

    Google Scholar 

  5. Willis S (2015) ENFSI guideline for the formulation of evaluative reports in forensic science. Monopoly Project MP2010: the development and implementation of an ENFSI standard for reporting evaluative forensic evidence. Technical report, European Network of Forensic Science Institutes

    Google Scholar 

  6. Ramos D (2007) Forensic evaluation of the evidence using automatic speaker recognition systems. PhD thesis, Depto. de Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, Spain. http://atvs.ii.uam.es

  7. Brümmer N, du Preez J (2006) Application independent evaluation of speaker detection. Comput Speech Lang 20(2–3):230–275

    Article  Google Scholar 

  8. van Leeuwen D, Brümmer N (2007) An introduction to application-independent evaluation of speaker recognition systems. In: Müller C (ed) Speaker classification. Lecture notes in computer science/Artificial intelligence, vol 4343. Springer, Heidelberg, Berlin, New York

    Google Scholar 

  9. Ramos D, Gonzalez-Rodriguez J (2013) Reliable support: measuring calibration of likelihood ratios. Forensic Sci Int 230:156–169

    Article  Google Scholar 

  10. Zadora G, Ramos D (2010) Evaluation of glass samples for forensic purposes–an application of likelihood ratio model and information-theoretical approach. Chemometr Intell Lab Syst 102:62–63

    Article  Google Scholar 

  11. Li P, Fu Y, Mohammed U, Elder J, Prince SJD (2010) Probabilistic models for inference about identity. IEEE Trans Pattern Anal Mach Intell (PAMI) 34(1):144–157

    Google Scholar 

  12. Dehak N, Kenny P, Dehak R, Dumouchel P, Ouellet P (2010) Front-end factor analysis for speaker verification. IEEE Trans Audio Speech Lang Process 19(4):788–798

    Article  Google Scholar 

  13. Villalba J, Brümmer N (2011) Towards fully Bayesian speaker recognition: integrating out the between-speaker covariance. Proceedings of the 12th annual conference of the international speech communication association, Interspeech 2011. Florence, Italy, pp 505–508

    Google Scholar 

  14. Zadora G, Martyna A, Ramos D, Aitken C (2014) Statistical analysis in forensic science: evidential values of multivariate physicochemical data. Wiley

    Google Scholar 

  15. Rodriguez CM, de Jongh A, Meuwly D (2013) Introducing a semiautomatic method to simulate large numbers of forensic fingermarks for research on fingerprint identification. J Forensic Sci 57(2):334–342

    Article  Google Scholar 

  16. van Leeuwen DA, Brümmer N (2013) The distribution of calibrated likelihood-ratios in speaker recognition. arXiv preprint

    Google Scholar 

  17. Ramos D, Gonzalez-Rodriguez J, Zadora G, Aitken C (2013) Information-theoretical assessment of the performance of likelihood ratio models. J Forensic Sci 58:1503–1518

    Article  Google Scholar 

  18. Haraksim R, Ramos D, Meuwly D, Berger CE (2015) Measuring coherence of computer-assisted likelihood ratio methods. Forensic Sci Int 249:123–132

    Article  Google Scholar 

  19. Meuwly D, Ramos D, Haraksim R (in press) A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation. Forensic Sci Int. 10.1016/j.forsciint.2016.03.048

  20. Taroni F, Aitken C, Garbolino P, Biedermann A (2006) Bayesian networks and probabilistic inference in forensic science. Wiley

    Google Scholar 

  21. Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA (1998) A hierarchy of propositions: deciding which level to address in casework. Sci Justice 38(4):231–239

    Article  Google Scholar 

  22. Evett IW, Jackson G, Lambert JA (2000) More on the hierarchy of propositions: exploring the distinction between explanations and propositions. Sci Justice 401(1):3–10

    Article  Google Scholar 

  23. Champod C, Evett IW, Jackson G (2004) Establishing the most appropriate databases for addressing source level propositions. Sci Justice 44(3):153–164

    Article  Google Scholar 

  24. Evett IW (1998) Towards a uniform framework for reporting opinions in forensic science casework. Sci Justice 38(3):198–202

    Article  Google Scholar 

  25. Neumann C, Evett IW, Skerrett JE, Mateos-Garcia I (2011) Quantitative assessment of evidential weight for a fingerprint comparison I: generalisation to the comparison of a mark with set of ten prints from a suspect. Forensic Sci Int 207:101–105

    Article  Google Scholar 

  26. Neumann C, Evett I, Skerret JE (2012) Quantifying the weight of evidence from a forensic fingerprint comparison: a new paradigm. J R Stat Soc Ser A: Stat Soc 175(2):371–415

    Article  MathSciNet  Google Scholar 

  27. Taroni F, Aitken CGG, Garbolino P (2001) De Finetti’s subjectivism, the assessment of probabilities and the evaluation of evidence: a commentary for forensic scientists. Sci Justice 41(3):145–150

    Article  Google Scholar 

  28. Doddington G, Liggett W, Martin A, Przybocki M, Reynolds DA (1998) Sheeps, goats, lambs and wolves: a statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLP

    Google Scholar 

  29. Hepler AB, Saunders CP, Davis LJ, Buscaglia J (2011) Score-based likelihood ratios for handwriting evidence. Foresic Sci Int 219(1–3):129–140

    Google Scholar 

  30. Meuwly D (2001) Reconaissance de Locuteurs en Sciences Forensiques: L’apport d’une Approache Automatique. PhD thesis, IPSC-Universite de Lausanne

    Google Scholar 

  31. Navratil J, Ramaswamy G (2003) The awe and mystery of T-Norm. In: Proceedings of ESCA European conference on speech, communication and technology, EuroSpeech, pp 2009–2012

    Google Scholar 

  32. Gonzalez-Rodriguez J, Fierrez-Aguilar J, Ramos-Castro D, Ortega-Garcia J (2005) Bayesian analysis of fingerprint, face and signature evidences with automatic biometric systems. Forensic Sci Int 155(2–3):126–140

    Article  Google Scholar 

  33. Pigeon S, Druyts P, Verlinde P (2000) Applying logistic regression to the fusion of the NIST’99 1-speaker submissions. Digit Signal Process 10(1):237–248

    Article  Google Scholar 

  34. Brümmer N, Burget L, Cernocky J, Glembek O, Grezl F, Karafiat M, van Leeuwen DA, Matejka P, Scwartz P, Strasheim A (2007) Fusion of heterogeneous speaker recognition systems in the STBU submission for the NIST speaker recognition evaluation 2006. IEEE Trans Audio Speech Signal Process 15(7):2072–2084

    Article  Google Scholar 

  35. Gonzalez-Rodriguez J, Rose P, Ramos D, Toledano DT, Ortega-Garcia J (2007) Emulating DNA: rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. IEEE Trans Audio Speech Signal Process 15(7):2072–2084

    Article  Google Scholar 

  36. Vergeer P, Bolck A, Peschier LJ, Berger CE, Hendriks JN (2014) Likelihood ratio methods for forensic comparison of evaporated gasoline residues. Sci Justice 56(6):401–411

    Article  Google Scholar 

  37. Morrison GS (2009) Likelihood-ratio-based forensic speaker comparison using parametric representations of vowel formant trajectories. J Acoust Soc Am 125:2387–2397

    Article  Google Scholar 

  38. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley

    Google Scholar 

  39. Cappelli R, Ferrara M, Maltoni D (2010) Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32:2128–2141

    Article  Google Scholar 

  40. Cappelli R, Ferrara M, Maltoni D (2010) Fingerprint indexing based on minutia cylinder code. IEEE Trans Pattern Anal Mach Intell 33:1051–1057

    Article  Google Scholar 

  41. Ferrara M, Maltoni D, Cappelli R (2012) Noninvertible minutia cylinder-code representation. IEEE Trans Inf Forensics Secur 7:1727–1737

    Article  Google Scholar 

  42. Egli N (2009) Interpretation of partial fingermarks using an automated fingerprint identification system. PhD thesis, Institute de Police Scientifique, Ecole de Sciences Criminelles

    Google Scholar 

  43. Santamaria F (1955) A new method of evaluating ridge characteristics. Fingerprint Ident Mag

    Google Scholar 

  44. Auckenthaler R, Carey M, Lloyd-Tomas H (2000) Score normalization for text-independent speaker verification systems. Digit Signal Process 10:42–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramos, D., Krish, R.P., Fierrez, J., Meuwly, D. (2017). From Biometric Scores to Forensic Likelihood Ratios. In: Tistarelli, M., Champod, C. (eds) Handbook of Biometrics for Forensic Science. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-50673-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50673-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50671-5

  • Online ISBN: 978-3-319-50673-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics