Advertisement

Biometric Technologies for Forensic Science and Policing: State of the Art

  • Christophe Champod
  • Massimo Tistarelli
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

In the last decades, biometric technologies have been applied in forensic investigations only to a limited extent of their possibilities. A number of factors have hindered the wider adoption of these technologies to operational scenarios. However, there have been a number of successful applications where biometric technologies were crucial to support investigation and to provide evidence in court. Given the great potential of biometric technologies for objective and quantitative evidence evaluation, it would be desirable to see a wider deployment of these technologies, in a standardized manner, among police forces and forensic institutes. In this chapter, after a review of the actual state of the art in forensic biometric systems, we try to identify some avenues to facilitate the application of advanced biometric technologies in forensic practice. Despite their impressive performance, some recent biometric technologies have never been applied to forensic evaluation. Other technologies will need adaptations to be ready for the forensic field. We postulate that there is a challenge to be faced with more advanced tools and testing on operational data. This will require a joint effort involving stakeholders and scientists from multiple disciplines as well as a greater involvement of forensic institutes and police forensic science departments.

Keywords

Crime Scene Biometric System Vein Pattern Forensic Expert Biometric Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is based upon work supported by the European Commission under the project COST IC1106 “Biometrics and Forensics for the Digital Age” and H2020 MSCA RISE 690907 “IDENTITY”.

References

  1. 1.
    Amraoui M, Abouchabaka J, Aroussi ME (2014) Finger knuckle print recognition based on multi-instance fusion of local feature sets. In: 2014 international conference on multimedia computing and systems (ICMCS), 14–16 April 2014, pp 87–92. doi: 10.1109/ICMCS.2014.6911188
  2. 2.
    Bertillon A (1890) La photographie judiciaire avec un appendice sur la classification et l’identification anthropométrique. Bibliothèque photographique. Gauthier-Villars et fils, ParisGoogle Scholar
  3. 3.
    Bertillon A (1893) Instructions signalétiques. Imprimerie administrative, MelunGoogle Scholar
  4. 4.
    Best-Rowden L, Han H, Otto C, Klare BF, Jain AK (2014) Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Trans Inf Forensics Secur 9(12):2144–2157. doi: 10.1109/TIFS.2014.2359577 CrossRefGoogle Scholar
  5. 5.
    Birch I, Raymond L, Christou A, Fernando MA, Harrison N, Paul F (2013) The identification of individuals by observational gait analysis using closed circuit television footage. Sci Justice 53(3):339–342. doi: 10.1016/j.scijus.2013.04.005 CrossRefGoogle Scholar
  6. 6.
    Black S, MacDonald-McMillan B, Mallett X (2014) The incidence of scarring on the dorsum of the hand. Int J Legal Med 128(3):545–553. doi: 10.1007/s00414-013-0834-7 CrossRefGoogle Scholar
  7. 7.
    Black S, MacDonald-McMillan B, Mallett X, Rynn C, Jackson G (2014) The incidence and position of melanocytic nevi for the purposes of forensic image comparison. Int J Legal Med 128(3):535–543. doi: 10.1007/s00414-013-0821-z CrossRefGoogle Scholar
  8. 8.
    Black SM, Mallett X, Rynn C, Duffield N (2009) Forensic hand image comparison as an aid for paedophile investigations. Police Prof 184:21–24Google Scholar
  9. 9.
    Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp 187–194. doi:http://dx.doi.org/10.1145/311535.311556
  10. 10.
    Butler JM (2010) Fundamentals of forensic DNA typing. Elsevier, Academic Press, AmsterdamGoogle Scholar
  11. 11.
    Butler JM (2015) Advanced topics in forensic DNA typing: interpretation. Elsevier, Academic Press, AmsterdamGoogle Scholar
  12. 12.
    Cadoni M, Bicego M, Grosso E (2009) 3D face recognition using joint differential invariants, advances in biometrics. In: Proceedings of the 3rd international conference on biometrics, ICB 2009, pp 279–288. doi: 10.1007/978-3-642-01793-3_29
  13. 13.
    Campbell JP, Shen W, Campbell WM, Schwartz R, Bonastre JF, Matrouf D (2009) Forensic speaker recognition—a need for caution. IEEE Signal Process Mag 26(2):95–103. doi: 10.1109/MSP.2008.931100 CrossRefGoogle Scholar
  14. 14.
    Champod C (2013) Overview and meaning of identification/individualization. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences. Academic Press, Waltham, pp 303–309. doi: 10.1016/B978-0-12-382165-2.00197-5
  15. 15.
    Champod C, Lennard CJ, Margot PA, Stoilovic M (2016) Fingerprints and other ridge skin impressions, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Chapman CL (1992) Dr. Juan Vucetich: his contribution to the science of fingerprints. J Forensic Ident 42(4):286–294Google Scholar
  17. 17.
    Choi J, Medioni G, Lin Y, Silva L, Pereira Bellon OR, Pamplona M, Faltemier TC (2010) 3D Face reconstruction using a single or multiple views. In: 20th international conference on pattern recognition ICPR 2010, Istanbul, Turkey, 23–26 Aug 2010, pp 3963–3966. doi: 10.1109/ICPR.2010.963
  18. 18.
    Choras M (2009) Ear biometrics. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi: 10.1007/978-0-387-73003-5_173
  19. 19.
    Cole S (2001) Suspect identities: a history of fingerprinting and criminal identification. Harvard University Press, CambridgeGoogle Scholar
  20. 20.
    Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recognit 36(2):279–291. doi: 10.1016/S0031-3203(02)00030-4 CrossRefGoogle Scholar
  21. 21.
    Daugman J (2006) Probing the uniqueness and randomness of IrisCodes: results from 200 billion iris pair comparisons. Proc IEEE 94(11):1927–1935. doi: 10.1109/JPROC.2006.884092 CrossRefGoogle Scholar
  22. 22.
    Daugman J, Downing C (2001) Epigenetic randomness, complexity, and singularity of human iris patterns. Proc Royal Soc Biol Sci B 268:1737–1740. doi: 10.1098/rspb.2001.1696
  23. 23.
    Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161. doi: 10.1109/34.244676 CrossRefGoogle Scholar
  24. 24.
    Dessimoz D, Champod C (2007) Linkages between biometrics and forensic science. In: Flynn PJ, Jain AK, Ross A (eds) Handbook of biometrics. Springer, New York, pp 425–459. doi: 10.1007/978-0-387-71041-9_21 Google Scholar
  25. 25.
    Dessimoz D, Champod C (2015) A dedicated framework for weak biometrics in forensic science for investigation and intelligence purposes: the case of facial information. Secur J (special issue on traceology) 29(4):603–617. doi: 10.1057/sj.2015.32
  26. 26.
    DiMaggio JA, Vernon W (2011) Forensic gait analysis. In: Forensic podiatry: principles and methods. Humana Press, Totowa, NJ, pp 103–115. doi: 10.1007/978-1-61737-976-5_6
  27. 27.
    Dorion RBJ (2005) Bitemark evidence. Forensic science. Marcel Dekker, New YorkGoogle Scholar
  28. 28.
    Drygajlo A, Jessen M, Gfroerer S, Wagner I, Vermeulen J, Niemi T (2016) Methodological Guidelines for Best Practice in Forensic Semiautomatic and Automatic Speaker Recognition. Verlag für Polizeiwissenshaften, FrankfurtGoogle Scholar
  29. 29.
    Gold E, Peter F (2011) International practices in forensic speaker comparison. Int J Speech Lang Law 18(2):293–307. doi: 10.1558/ijsll.v18i2.293 CrossRefGoogle Scholar
  30. 30.
    Gonzalez-Rodriguez J, Rose P, Ramos D, Toledano DT, Ortega-Garcia J (2007) Emulating DNA: rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. IEEE Trans Audio Speech Lang Process 15(7):2104–2115. doi: 10.1109/TASL.2007.902747 CrossRefGoogle Scholar
  31. 31.
    Grimson WEL (1981) From images to surfaces: a computational study of the human early vision system. MIT PressGoogle Scholar
  32. 32.
    Grother PJ, Ngan ML (2014) Face recognition vendor test (FRVT)—performance of face identification algorithms, NIST interagency report 8009. National Institute for Standards and Technology, GaithersburghGoogle Scholar
  33. 33.
    Grother PJ, Quinn GW, Matey JR, Ngan ML, Salamon WJ, Fiumara GP, Watson CI (2012) IREX III: performance of iris identification algorithms, NIST interagency report 7836. National Institute of Standard and Technology, GaithersburgCrossRefGoogle Scholar
  34. 34.
    Hassner T (2013) Viewing real-world faces in 3D. In: International conference on computer vision (ICCV), Sydney, Australia, pp 3607–3614Google Scholar
  35. 35.
    Hoogstrate AJ, van den Heuvel C, Huyben E (2001) Ear identification based on surveillance camera images. Sci Justice 41(3):167–172. doi: 10.1016/S1355-0306(01)71885-0 CrossRefGoogle Scholar
  36. 36.
    Hopwood AJ, Puch-Solis R, Tucker VC, Curran JM, Skerrett J, Pope S, Tully G (2012) Consideration of the probative value of single donor 15-plex STR profiles in UK populations and its presentation in UK courts. Sci Justice 52(3):185–190. doi: 10.1016/j.scijus.2012.05.005 CrossRefGoogle Scholar
  37. 37.
    Horn BKP, Brooks MJ (eds) (1989) Shape from shading. MIT PressGoogle Scholar
  38. 38.
    Huber RA, Headrick AM (1999) Handwriting identification: facts and fundamentals. CRC Press, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Hu Y, Jiang D, Yan S, Zhang L (2004) Automatic 3D reconstruction for face recognition. In Proceedings of 6th IEEE international conference on automatic face and gesture recognition, FRGC 2004. IEEE, pp 843–848. doi: 10.1109/AFGR.2004.1301639
  40. 40.
    Hurley DJ, Nixon MS (2009) Physical analogies for ear recognition. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi: 10.1007/978-0-387-73003-5_172
  41. 41.
    Indovina M, Dvornychenko V, Hicklin RA, Kiebuzinski GI (2012) ELFT‐EFS evaluation of latent fingerprint technologies: extended feature sets [Evaluation #2]. vol NISTIR 7859. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  42. 42.
    Indovina M, Hicklin RA, Kiebuzinski GI (2011) ELFT-EFS Evaluation of latent fingerprint technologies: extended feature [Sets Evaluation #1]. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  43. 43.
    Jackson G, Black S (2014) Use of data to inform expert evaluative opinion in the comparison of hand images—the importance of scars. Int J Legal Med 128(3):555–563. doi: 10.1007/s00414-013-0828-5 CrossRefGoogle Scholar
  44. 44.
    Jackson G, Jones S, Booth G, Champod C, Evett IW (2006) The nature of forensic science opinion—a possible framework to guide thinking and practice in investigations and in court proceedings. Sci Justice 46(1):33–44. doi: 10.1016/S1355-0306(06)71565-9 CrossRefGoogle Scholar
  45. 45.
    Jaha ES, Nixon MS (2014) Soft biometrics for subject identification using clothing attributes. In: 2014 IEEE international joint conference on biometrics (IJCB), Sept 29 2014–Oct 2 2014, pp 1–6. doi: 10.1109/BTAS.2014.6996278
  46. 46.
    Jain AK, Klare B, Park U (2012) Face matching and retrieval in forensics applications. IEEE Multimed 19(1):20. doi: 10.1109/MMUL.2012.4 CrossRefGoogle Scholar
  47. 47.
    Jain AK, Nandakumar K, Ross A (2016) 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recog Lett 79:80–105. doi: 10.1016/j.patrec.2015.12.013 CrossRefGoogle Scholar
  48. 48.
    Jain AK, Ross A (2015) Bridging the gap: from biometrics to forensics. Philos Trans Royal Soc Lond B: Biol Sci 370 (1674). doi: 10.1098/rstb.2014.0254
  49. 49.
    Junod S, Champod C (2012) Earprint comparison: automated systems. In: Jamieson A, Moenssens AA (eds) Wiley encyclopedia of forensic science. John Wiley, Chichester. doi: 10.1002/9780470061589.fsa1033
  50. 50.
    Junod S, Pasquier J, Champod C (2012) The development of an automatic recognition system for earmark and earprint comparisons. Forensic Sci Int 222(1–3):170–178. doi: 10.1016/j.forsciint.2012.05.021 CrossRefGoogle Scholar
  51. 51.
    Kemelmacher-Shlizerman I, Basri R (2011) 3D face reconstruction from a single image using a single reference face shape. IEEE TPAMI 33(2):394–405. doi: 10.1109/TPAMI.2010.63 CrossRefGoogle Scholar
  52. 52.
    Klare B, Li Z, Jain AK (2011) Matching forensic sketches to mug shot photos. IEEE Trans Pattern Anal Mach Intell 33(3):639–646. doi: 10.1109/TPAMI.2010.180 CrossRefGoogle Scholar
  53. 53.
    Klontz JC, Jain AK (2013) A case study of automated face recognition: the Boston marathon bombings suspects. IEEE Comput 46(11):91–94 . doi: 10.1109/MC.2013.377
  54. 54.
    Klum S, Han H, Jain AK, Klare B (2013) Sketch based face recognition: forensic vs. composite sketches. In: 2013 international conference on biometrics (ICB), 4–7 June 2013, pp 1–8. doi: 10.1109/ICB.2013.6612993
  55. 55.
    Kumar A (2012) Can we use minor finger knuckle images to identify humans? In: 2012 IEEE fifth international conference on biometrics: theory, applications and systems (BTAS), 23–27 Sept 2012, pp 55–60. doi: 10.1109/BTAS.2012.6374558
  56. 56.
    Kumar A (2014) Importance of being unique from finger dorsal patterns: exploring minor finger knuckle patterns in verifying human identities. IEEE Trans Inf Forensics Secur 9(8):1288–1298. doi: 10.1109/TIFS.2014.2328869 CrossRefGoogle Scholar
  57. 57.
    Kumar A, Ravikanth C (2009) Personal authentication using finger knuckle surface. IEEE Trans Inf Forensics Secur 4(1):98–109. doi: 10.1109/TIFS.2008.2011089 CrossRefGoogle Scholar
  58. 58.
    Kumar A, Wu C (2012) Automated human identification using ear imaging. Pattern Recognit 45(3):956–968. doi: 10.1016/j.patcog.2011.06.005 CrossRefGoogle Scholar
  59. 59.
    Kumar A, Xu Z (2014) Can we use second minor finger knuckle patterns to identify humans? In: 2014 IEEE conference on computer vision and pattern recognition workshops, 23–28 June 2014, pp 106–112. doi: 10.1109/CVPRW.2014.21
  60. 60.
    Larsen PK, Simonsen EB, Lynnerup N (2008) Gait analysis in forensic medicine. J Forensic Sci 53(5):1149–1153. doi: 10.1111/j.1556-4029.2008.00807.x CrossRefGoogle Scholar
  61. 61.
    Lee J, Jin R, Jain AJ, Tong W (2012) Image retrieval in forensics: tattoo image database application. IEEE Multimed 19(1):40–49. doi: 10.1109/MMUL.2011.59 CrossRefGoogle Scholar
  62. 62.
    Ludwig O, Dillinger S, Marschall F (2016) Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis. Forensic Sci Int 264:15–23. doi: 10.1016/j.forsciint.2016.02.043 CrossRefGoogle Scholar
  63. 63.
    Lynnerup N, Vedel J (2005) Person identification by gait analysis and photogrammetr. J Forensic Sci 50(1):1–7. doi: 10.1520/JFS2004054 CrossRefGoogle Scholar
  64. 64.
    Makihara Y, Matovski DS, Nixon MS, Carter JN, Yagi Y (2015) Gait recognition: databases, representations, and applications. Wiley Encyclopedia of Electrical and Electronics Engineering, pp 1–15. doi: 10.1002/047134608X.W8261
  65. 65.
    Meagher S, Dvornychenko V, Garris M (2014) Characterization of latent print “lights-out” modes for automated fingerprint identification systems. J Forensic Ident 64(3):255–284Google Scholar
  66. 66.
    Meuwly D (2006) Forensic individualisation from biometric data. Sci Justice 46(4):205–213. doi: 10.1016/S1355-0306(06)71600-8 CrossRefGoogle Scholar
  67. 67.
    Meuwly D, Ramos D, Haraksim R (to appear) A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation. Forensic Sci Int. doi: 10.1016/j.forsciint.2016.03.048
  68. 68.
    Meuwly D, Veldhuis R (2012) Forensic biometrics: from two communities to one discipline. In: Proceedings of the international conference of the biometrics special interest group (BIOSIG), 2012 BIOSIG, 6–7 Sept 2012, pp 1–12Google Scholar
  69. 69.
    Moses K (2011) Chapter 6: Automatic fingerprint identification systems (AFIS). In: McRoberts A (ed) The fingerprint sourcebook. National Institute of Justice, Washington DC, pp 6-1–6-33Google Scholar
  70. 70.
    National Research Council (2009) Strengthening forensic science in the United States: a path forward. The National Academies Press, Washington, DCGoogle Scholar
  71. 71.
    Neumann C, Evett IW, Skerrett J (2012) Quantifying the weight of evidence from a forensic fingerprint comparison: a new paradigm. J Roy Stat Soc Ser A (Stat Soc) 175(Part 2):371–415 (with discussion)Google Scholar
  72. 72.
    Neustein A, Patil HA (eds) (2012) Forensic speaker recognition. Springer, New York. doi: 10.1007/978-1-4614-0263-3 Google Scholar
  73. 73.
    Nixon MS, Correia PL, Nasrollahi K, Moeslund TB, Hadid A, Tistarelli M (2015) On soft biometrics. Pattern Recog Lett 68(Part 2):218–230. doi: 10.1016/j.patrec.2015.08.006 CrossRefGoogle Scholar
  74. 74.
    Nixon MS, Tan TN, Chellappa R (2006) Human identification based on gait. International series on biometrics. Springer, New York. doi: 10.1007/978-0-387-29488-9 CrossRefGoogle Scholar
  75. 75.
    Raghavendra R, Surbiryala J, Busch C (2015) Hand dorsal vein recognition: sensor, algorithms and evaluation. In: 2015 IEEE international conference on imaging systems and techniques (IST), 16–18 Sept. 2015, pp 1–6. doi: 10.1109/IST.2015.7294557
  76. 76.
    Ramos D, Gonzalez-Rodriguez J (2013) Reliable support: measuring calibration of likelihood ratios. Forensic Sci Int 230(1–3):156–169. doi: 10.1016/j.forsciint.2013.04.014 CrossRefGoogle Scholar
  77. 77.
    Ramos D, Gonzalez-Rodriguez J, Zadora G, Aitken C (2013) Information-theoretical assessment of the performance of likelihood ratio computation methods. J Forensic Sci 58(6):1503–1518. doi: 10.1111/1556-4029.12233 CrossRefGoogle Scholar
  78. 78.
    Ramos-Castro D, Gonzalez-Rodriguez J, Ortega-Garcia J (2006) Likelihood ratio calibration in a transparent and testable forensic speaker recognition framework. In: Speaker and language recognition workshop, 2006. IEEE Odyssey 2006: The, 28–30 June 2006, pp 1–8. doi: 10.1109/ODYSSEY.2006.248088
  79. 79.
    Reid DA, Samangooei S, Chen C, Nixon M, Ross A (2013) Soft biometrics for surveillance: an overview. In: Govindaraju V, Rao CR (eds) Handbook of statistics, vol 31. Elsevier, North Holland, Amsterdam, pp 327–352. doi: 10.1016/B978-0-44-453859-8.00013-8
  80. 80.
    Roth J, Tong Y, Liu X (2015) Unconstrained 3D face reconstruction. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 2606–2615. doi: 10.1109/CVPR.2015.7298876
  81. 81.
    Sandini G, Tistarelli M (1990) Active tracking strategy for monocular depth inference over multiple frames. IEEE Trans PAMI PAMI-11(12):13–27. doi: 10.1109/34.41380
  82. 82.
    Sannié C (1950) Alphonse Bertillon et la dactyloscopie. L’affaire Scheffer. Revue internationale de police criminelle 5(41):255–262Google Scholar
  83. 83.
    Schwartz R, Campbell JP, Shen W (2011) When to punt on speaker comparison? J Acoust Soc Am 130(4):2547. doi: 10.1121/1.3655180 CrossRefGoogle Scholar
  84. 84.
    Spaun NA (2011) Face recognition in forensic science. In: Li SZ, Jain AK (eds) Handbook of face recognition. Springer International Publishing, pp 655–670. doi: 10.1007/978-0-85729-932-1_26
  85. 85.
    Stevenage SV, Walpole C, Neil GJ, Black SM (2015) Testing the reliability of hands and ears as biometrics: the importance of viewpoint. Psychol Res 79(6):989–999. doi: 10.1007/s00426-014-0625-x CrossRefGoogle Scholar
  86. 86.
    Tistarelli M, Grosso E, Meuwly D (2014) Biometrics in forensic science: challenges, lessons and new technologies. In: Cantoni V, Dimov D, Tistarelli M (eds) Biometric authentication: first international workshop, BIOMET 2014, Sofia, Bulgaria, June 23–24, 2014. Revised Selected Papers. Springer International Publishing, Cham, pp 153–164. doi: 10.1007/978-3-319-13386-7_12
  87. 87.
    Tistarelli M, Cadoni M, Lagorio A (2016) Matching reconstructed 3D face shapes. Personal communicationGoogle Scholar
  88. 88.
    Tistarelli M, Cadoni M, Lagorio A, Grosso E (2016) Blending 2D and 3D face recognition. In: Bourlai T (ed) Face recognition across the imaging spectrum. Springer International Publisher, pp 305–331. doi: 10.1007/978-3-319-28501-6_13
  89. 89.
    Tome P, Fierrez J, Vera-Rodriguez R, Nixon MS (2014) Soft biometrics and their application in person recognition at a distance. IEEE Trans Inf Forensics Secur 9(3):464–475. doi: 10.1109/TIFS.2014.2299975 CrossRefGoogle Scholar
  90. 90.
    Tome P, Fierrez J, Vera-Rodriguez R, Ramos D (2013) Identification using face regions: application and assessment in forensic scenarios. Forensic Sci Int 233(1–3):75–83. doi: 10.1016/j.forsciint.2013.08.020 CrossRefGoogle Scholar
  91. 91.
    Tome P, Vera-Rodriguez R, Fierrez J, Ortega-Garcia J (2015) Facial soft biometric features for forensic face recognition. Forensic Sci Int 257:271–284. doi: 10.1016/j.forsciint.2015.09.002 CrossRefGoogle Scholar
  92. 92.
    Van der Lugt C (2001) Earprint identification. Elsevier’s-GravenhageGoogle Scholar
  93. 93.
    Venugopalan S, Prasad U, Harun K, Neblett K, Toomey D, Heyman J, Savvides M (2011) Long range iris acquisition system for stationary and mobile subjects. In: 2011 international joint conference on biometrics (IJCB), 11–13 Oct 2011, pp 1–8. doi: 10.1109/IJCB.2011.6117484
  94. 94.
    Willis SM et al (2015) ENFSI guideline for evaluative reporting in forensic science. European Network of Forensic Science Institutes, Dublin. http://enfsi.eu/sites/default/files/documents/external_publications/m1_guideline.pdf Google Scholar
  95. 95.
    Yamashita BA, Kennedy RB (2009) Forensic barefoot comparison. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi: 10.1007/978-0-387-73003-5_181
  96. 96.
    Zhang L, Zhang L, Zhang D, Zhu H (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recognit 43(7):1571–2560. doi: 10.1016/j.patcog.2010.01.020 zbMATHGoogle Scholar
  97. 97.
    Zhang L, Zhang L, Zhang D, Zhu H (2011) Ensemble of local and global information for finger–knuckle-print recognition. Pattern Recognit 44(9):1990–1998. doi: 10.1016/j.patcog.2010.06.007 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Criminal JusticeUniversity of LausanneLausanneSwitzerland
  2. 2.PolComIng, Computer Vision LaboratoryUniversity of SassariSassariItaly

Personalised recommendations