Advertisement

Scientific Scholarly Communication: Moving Forward Through Open Discussions

  • Pali U. K. De SilvaEmail author
  • Candace K. Vance
Chapter
  • 785 Downloads
Part of the Fascinating Life Sciences book series (FLS)

Abstract

The formal scientific communication system has continued to evolve over the last 350 years, shaped by economic factors, geopolitical events, and technological advances that are taking place at an unprecedented pace. However, throughout this evolutionary process, the discussions, debates, and deliberations that have taken place can be considered the most significant factors in improving the quality of the scientific scholarly communication system. This chapter touches on some of the discussions, debates, and conscientious deliberations that have occurred and currently taking place influencing toward a more efficient scholarly communication system needed to enhance the quality and the speed of scientific progress.

Keywords

Scientific communication Open access Open data Genetic data sharing Scientific scholarly impact Intellectual property rights 

References

  1. Andrews, L. B. (2002). Genes and patent policy: Rethinking intellectual property rights. Nature Reviews Genetics, 3(10), 803–808.CrossRefPubMedGoogle Scholar
  2. Azoulay, P., Ding, W., & Stuart, T. (2007). The determinants of faculty patenting behavior: Demographics or opportunities? Journal of Economic Behavior & Organization, 63(4), 599–623. doi: 10.1016/j.jebo.2006.05.015 CrossRefGoogle Scholar
  3. Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer research. Nature, 483(7391), 531–533.CrossRefPubMedGoogle Scholar
  4. Bentwich, M. (2010). Changing the rules of the game: addressing the conflict between free access to scientific discovery and intellectual property rights. Nature Biotechnology, 28(2), 137–140. doi: 10.1038/nbt0210-137 CrossRefPubMedGoogle Scholar
  5. Biddle, J. B. (2012). Tragedy of the Anticommons? Intellectual Property and the Sharing of Scientific Information. Philosophy of Science, 79(5), 821–832.CrossRefGoogle Scholar
  6. Birney, E., Hudson, T. J., Green, E. D., Gunter, C., Eddy, S., Rogers, J., et al. (2009). Prepublication data sharing. Nature, 461(7261), 168–170.CrossRefPubMedGoogle Scholar
  7. Bishop, D. V. M. (2016). Open research practices: unintended consequences and suggestions for averting them. (Commentary on the Peer Reviewers’ Openness Initiative). Open Science, 3(4), 160109.Google Scholar
  8. Borgman, C. L. (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078.CrossRefGoogle Scholar
  9. Bornmann, L., & Daniel, H.-D. (2007). Convergent validation of peer review decisions using the h index—Extent of and reasons for type I and type II errors. Journal of Informetrics, 1(3), 204–213. doi: 10.1016/j.joi.2007.01.002 CrossRefGoogle Scholar
  10. Boulton, G. (2014). The open data imperative. Insights, 27(2).Google Scholar
  11. Chew, M., Villanueva, E. V., & Van Der Weyden, M. B. (2007). Life and times of the impact factor: Retrospective analysis of trends for seven medical journals (1994–2005) and their Editors’ views. Journal of the Royal Society of Medicine, 100(3), 142–150. doi: 10.1258/jrsm.100.3.142 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Czarnitzki, D., Grimpe, C., & Toole, A. A. (2014). Delay and secrecy: Does industry sponsorship jeopardize disclosure of academic research? (0960-6491). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-31376
  13. Danielsson, K., Mun, L. J., Lordemann, A., Mao, J., & Lin, C.-H. J. (2014). Next-generation sequencing applied to rare diseases genomics. Expert Review of Molecular Diagnostics, 14(4), 469–487.CrossRefPubMedGoogle Scholar
  14. David, P. A. (2004). Can “open science” be protected from the evolving regime of IPR protections? Journal of Institutional and Theoretical Economics-Zeitschrift Fur Die Gesamte Staatswissenschaft, 160(1), 9–34. doi: 10.1628/093245604773861069 CrossRefGoogle Scholar
  15. Donovan, C. (2007). The qualitative future of research evaluation. Science and Public Policy, 34(8), 585–597.CrossRefGoogle Scholar
  16. Egghe, L., & Rousseau, R. (2008). An h-index weighted by citation impact. Information Processing and Management, 44(2), 770–780. doi: 10.1016/j.ipm.2007.05.003 CrossRefGoogle Scholar
  17. Fabrizio, K. R., & Di Minin, A. (2008). Commercializing the laboratory: Faculty patenting and the open science environment. Research Policy, 37(5), 914–931.CrossRefGoogle Scholar
  18. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.CrossRefPubMedGoogle Scholar
  19. Garfield, E. (1976). Significant journals of science. Nature, 264, 609–615.CrossRefPubMedGoogle Scholar
  20. Garfield, E. (1999). Journal impact factor: A brief review. Canadian Medical Association Journal, 161(8), 979–980.PubMedPubMedCentralGoogle Scholar
  21. Grimes, H. D., Payumo, J., & Jones, K. (2011). Opinion: Food security needs sound IP. The Scientist. Available at: http://the-scientist.com/2011/07/20/opinion-food-security-needs-sound-ip/. Last accessed 19 December 2011.
  22. Grushcow, J. M. (2004). Measuring secrecy: A cost of the patent system revealed. The Journal of Legal Studies, 33(1), 59–84.CrossRefGoogle Scholar
  23. Harmon, A. (2010). Indian tribe wins fight to limit research of its DNA. New York Times, 21, 2010.Google Scholar
  24. Haustein, S., Costas, R., & Larivière, V. (2015). Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns. PLoS ONE, 10(3), e0120495.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heller, M. A., & Eisenberg, R. S. (1998). Can patents deter innovation? The anticommons in biomedical research. Science, 280(5364), 698–701. doi: 10.1126/science.280.5364.698.CrossRefPubMedGoogle Scholar
  26. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. doi: 10.1073/pnas.0507655102.
  27. Huang, K. G., & Murray, F. E. (2009). Does patent strategy shape the long-run supply of public knowledge? Evidence from human genetics. Academy of Management Journal, 52(6), 1193–1221.CrossRefGoogle Scholar
  28. Kaye, J., Heeney, C., Hawkins, N., De Vries, J., & Boddington, P. (2009). Data sharing in genomics—Re-shaping scientific practice. Nature Reviews Genetics, 10(5), 331–335.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Levenson, D. (2010). New research may help differentiate similar diagnoses. American Journal of Medical Genetics Part A, 152a(2), ix. doi: 10.1002/ajmg.a.33285
  30. Liptak, A. (2013, June 13). Supreme Court Rules Human Genes May Not Be Patented. The Washington Post.Google Scholar
  31. Malakoff, D. (2013). Hey, you’ve got to hide your work away. Science, 342, 70–71.CrossRefPubMedGoogle Scholar
  32. Markel, H. (1997). Scientific advances and social risks: historical perspectives of genetic screening programs for sickle cell disease, Tay-Sachs disease, neural tube defects, and Down syndrome, 1970–1997. Retrieved from https://www.genome.gov/10001733/genetic-testing-report/
  33. Mavrogenis, A. F., Ruggieri, P., & Papagelopoulos, P. J. (2010). Self-citation in Publishing (Editorial). Clinical Orthopaedics and Related Research, 468(10), 2803–2807.CrossRefPubMedPubMedCentralGoogle Scholar
  34. McBratney, A., Nielsen, K., & McMillan, F. (2004). Australia experiments with’experimental use’exemption. Nature Biotechnology, 22(8), 1023–1025.CrossRefPubMedGoogle Scholar
  35. McGuire, A. L., & Majumder, M. A. (2009). Two cheers for GINA. Genome Med, 1(1), 6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Merrill, S. A., & Mazza, A.-M. (2011). Managing university intellectual property in the public interest. National Academies Press.Google Scholar
  37. Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. University of Chicago press.Google Scholar
  38. Molinari, A., & Molinari, J.-F. (2008). Mathematical aspects of a new criterion for ranking scientific institutions based on the h-index. Scientometrics, 75(2), 339–356.CrossRefGoogle Scholar
  39. Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by U.S. universities: An assessment of the effects of the Bayh-Dole act of 1980. Research Policy, 30(1), 99–119. doi: 10.1016/S0048-7333(99)00100-6 CrossRefGoogle Scholar
  40. Murdoch, C. J., & Caulfield, T. (2009). Commercialization, patenting and genomics: Researcher perspectives. Genome Medicine, 1(2), 22. doi: 10.1186/gm22 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murray, F., Aghion, P., Dewatripont, M., Kolev, J., & Stern, S. (2009). Of mice and academics: Examining the effect of openness on innovation. (Working paper No. 14819). Retrieved from National Bureau of Economic Research website: http://www.nber.org/papers/w14819.
  42. Murray, F., & Stern, S. (2007). Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the anti-commons hypothesis. Journal of Economic Behavior & Organization, 63(4), 648–687.CrossRefGoogle Scholar
  43. Pacheco, C. M., Daley, S. M., Brown, T., Filippi, M., Greiner, K. A., & Daley, C. M. (2013). Moving forward: Breaking the cycle of mistrust between American Indians and researchers. American Journal of Public Health, 103(12), 2152–2159.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Reichman, O. J., Jones, M. B., & Schildhauer, M. P. (2011). Challenges and opportunities of open data in ecology. Science, 331(6018).Google Scholar
  45. Resnik, D. B. (2013). H5N1 avian flu research and the ethics of knowledge. Hastings Center Report, 43(2), 22–33.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Roberts, J. L. (2010). Preempting Discrimination: Lessons from the Genetic Information Nondiscrimination Act. Vanderbilt Law Review, 63(2).Google Scholar
  47. Rousseau, R., & Ye, F., Y. (2013). A multi-metric approach for research evaluation. Chinese Science Bulletin, 58(26), 3288–3290.Google Scholar
  48. Schadt, E. E., Woo, S., & Hao, K. (2012). Bayesian method to predict individual SNP genotypes from gene expression data. Nature Genetics, 44(5), 603–608.CrossRefPubMedGoogle Scholar
  49. Stewart, T. A., Pattengale, P. K., & Leder, P. (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell, 38(3), 627–637. doi: 10.1016/0092-8674(84)90257-5 CrossRefPubMedGoogle Scholar
  50. Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services.Google Scholar
  51. Walsh, J. P., Cohen, W. M., & Cho, C. (2007). Where excludability matters: Material versus intellectual property in academic biomedical research. Research Policy, 36(8), 1184–1203.CrossRefGoogle Scholar
  52. Waltz, E. (2009). Under wraps. Nature Biotechnology, 27(10), 880–882.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Murray State UniversityMurrayUSA

Personalised recommendations