Advertisement

Control with Phasor Feedback

Chapter
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

Prior to the introduction of real-time phasor measurements, power system control was essentially used by local signals. Feedback control with such locally available measurements is widely used in controlling machines. In other situations, control action was taken on the basis of a mathematical model of the system without actual measurement of the system.

References

  1. 1.
    Stengel, R. F. (1986). Stochastic optimal control: Theory and application. New York: Wiley.zbMATHGoogle Scholar
  2. 2.
    Rostamkolai, N., Phadke, A. G., Thorp, J. S., & Long, W. F. (1988). Measurement based optimal control of high voltage AC/DC systems. IEEE Transaction on Power Systems, 3(3), 1139–1145.CrossRefGoogle Scholar
  3. 3.
    Manansala, E. C., & Phadke, A. G. (1991). An optimal centralized controller with nonlinear voltage control. Electric Machines and Power Systems, 19, 139–156.CrossRefGoogle Scholar
  4. 4.
    Kundur, P. (1994). Power system stability and control, Example 12.6, p. 813 McGraw-Hill.Google Scholar
  5. 5.
    Smith, M. A. (1994). Improved dynamic stability using FACTS devices with phasor measurement feedback, MS Thesis, Virginia Tech, 1994.Google Scholar
  6. 6.
    Mili, L. Baldwin, T., Phadke, A. G. (1991). Phasor measurements for voltage and transient stability monitoring and control. Workshop on Application of advanced mathematics to Power Systems, San Francisco, September 4–6, 1991.Google Scholar
  7. 7.
    Liu., J., Thorp, J.S., & Chiang, H.-D. (1992). Modal control of large flexible space structures using collocated actuators and sensors. IEEE Transaction on Automatic Control, 37, 143–47, January, 1992.Google Scholar
  8. 8.
    Boyd, S., El-Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM books.CrossRefzbMATHGoogle Scholar
  9. 9.
    Majumder, R., Chaudhuri, B., & Pal, B. C. (2005). A probabilistic approach to model-based adaptive control for damping of interarea oscillations. IEEE Transaction on Power Systems, 20(1), 367–374.CrossRefGoogle Scholar
  10. 10.
    Pal, A. (2012). Coordinated control of inter-area oscillations using SMA and LMI. M.S. Thesis, Virginia Tech, Blacksburg, May, 2012.Google Scholar
  11. 11.
    Jabr, R. A., Pal, B. C., & Martins, N. (2010). A sequential conic programming approach for the coordinated and robust design of power system stabilizers. IEEE Transaction on Power Systems, 25(3), 1627–1637.CrossRefGoogle Scholar
  12. 12.
    Pal, A., Thorp, J. S., Veda, S. S., & Centeno, V. A. (2013). Applying a robust control technique to damp low frequency oscillations in the WECC. International Journal of Electrical Power and Energy Systems, 44(1), 638–645.CrossRefGoogle Scholar
  13. 13.
    Pal, A., & Thorp, J. S. (2012). Co-ordinated control of inter-area oscillations using SMA and LMI. In Proceedings of the IEEE Power Energy Society Conference Innovative Smart Grid Technology, Washington D.C., January 16–20, pp 1–6Google Scholar
  14. 14.
    Verghese, G. C., Perez-Arriaga, I. J., & Schweppe, F. C. (1982). Selective modal analysis with applications to electric power systems, Part II: The dynamic stability problem. IEEE Trans on PAS, 101(9), 3126–3134.CrossRefGoogle Scholar
  15. 15.
    Ma, J., Garlapati, S., & Thorp, J. (2011). Robust WAMS based control of inter area oscillations. Electric Power Components and Systems, 39(9), 850–862.CrossRefGoogle Scholar
  16. 16.
    Vance, K., Pal, A., & Thorp, J. S. (2012). A robust control technique for damping inter-area oscillations. In Proceedings of the IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, February 24–25, 2012, pp. 1–8.Google Scholar
  17. 17.
    Fang, D. Z., Yang, X., Chung, T. S., & Wong, K. P. (2004). Adaptive fuzzy logic SVC damping controller using strategy of oscillation energy descent. IEEE Transaction on Power Systems, 19(3), 1414–1421.CrossRefGoogle Scholar
  18. 18.
    Chaudhuri, B., Majumder, R., & Pal, B. C. (2004). Application of multiple model adaptive control strategy for robust damping of interarea oscillations in power system. IEEE Transaction on Control System Technol, 12(5), 727–736.CrossRefGoogle Scholar
  19. 19.
    Ma, J., Wang, T., Wang, Z., & Thorp, J. S. (2013). Adaptive damping control of inter-area oscillations based on federated Kalman filter using wide area signals. IEEE Transaction on Power Systems, 28(2), 1627–1635.CrossRefGoogle Scholar
  20. 20.
    Bendtsen, J. D., Stoustrup, J., & Trangbaek, K. (2003). Multi-dimensional gain scheduling with application to power plant control. In Proceedings of the 42nd IEEE Conference Decision Control (vol. 6, pp 6553–6558), Maui, HI, USA, December 9–12, 2003.Google Scholar
  21. 21.
    Ma, J., Wang, T., Wang, S., Gao, X., Zhu, X., Wang, Z., et al. (2014). Application of dual Youla parameterization based adaptive wide-area damping control for power system oscillations. IEEE Transaction on Power Systems, 29(4), 1602–1610.CrossRefGoogle Scholar
  22. 22.
    Wang, T., Pal, A., Thorp, J. S., Wang, Z., Liu, J., & Yang, Y. (2015). Multi-polytope based adaptive robust damping control in power systems using CART. IEEE Transaction on Power Systems, 30(4), 2063–2072.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Yemula, P., & Bose, A. (2015). Decentralized communication and control systems for power system operation. IEEE Transaction on Smart Grid, 6(2), 885–893.CrossRefGoogle Scholar
  24. 24.
    Anh, N. T., Vanfretti, L., Driesen, J., & Hertem, D. V. (2015). A quantitative method to determine ICT delay requirements for wide-area power system damping controllers. IEEE Transaction on Power Systems, 30(4), 2023–2030.CrossRefGoogle Scholar
  25. 25.
    Bi, T., Guo, J., Xu, K., Zhang, L., & Yang, Q. (2016). The impact of time synchronization deviation on the performance of synchrophasor measurements and wide area damping control. IEEE Trans on Smart Grid, PP(99), 1–8.Google Scholar
  26. 26.
    Sánchez-Ayala, G., Centeno, V., & Thorp, J. (2016). Gain scheduling with classification trees for robust centralized control of PSSs. IEEE Transaction on Power Systems, 31(3), 1933–1942.CrossRefGoogle Scholar
  27. 27.
    Vahidnia, A., Ledwich, G., & Palmer, E. W. (2016). Transient stability improvement through wide-area controlled SVCs. IEEE Transaction on Power Systems, 31(4), 3082–3089.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations