Advertisement

State Estimation

Chapter
  • 1k Downloads
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

Before the advent of state estimation, the power system operator had responsibility for many real-time control center functions including scheduling generation and interchange, monitoring outages and scheduling alternatives, supervising scheduled outages, scheduling frequency and time corrections, coordinating bias settings, and emergency restoration of the system.

Keywords

Phasor Measurement Line Parameter Current Transformer Load Flow Voltage Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allemong, J. J., et al. (1982). A fast and reliable state estimation algorithm for AEP’s new control center. IEEE Transactions on Power Apparatus and Systems, 101(4), 933–944.CrossRefGoogle Scholar
  2. 2.
    Dopazo, J. F., et al. (1975). Implementation of the AEP real-time monitoring system. IEEE Transactions on Power Apparatus and Systems, 95(5), 1618–1529.Google Scholar
  3. 3.
    Handshin, E., et al. (1975). Bad data analysis for power system static state estimation. IEEE Transactions on Power Apparatus and Systems, 94(2), 329–337.Google Scholar
  4. 4.
    Monticelli, A., Wu, F. F., & Yen, M. (1971). Multiple bad data identification for state estimation using combinatorial optimization. IEEE PAS-90, 2718–2725.Google Scholar
  5. 5.
    Nuki, R. F., & Phadke, A. G. (2005). Phasor measurement placement techniques for complete and incomplete observability. IEEE Transactions on Power Delivery, 20(4), 2381–2388.CrossRefGoogle Scholar
  6. 6.
    Gou, B., & Abur, A. (2001). An improved measurement placement algorithm for network observability. IEEE Trans on Power Systems, 16(4), 819–824.Google Scholar
  7. 7.
    Abur, A. (2005). Optimal placement of phasor measurements units for state estimation. PSERC Publication. October 06–58, 2005.Google Scholar
  8. 8.
    Phadke, A. G., & Thorp, J. S. (1988). Computer relaying for power systems. Somerset, England: Research Studies Press.Google Scholar
  9. 9.
    Thorp, J. S., Phadke, A. G., & Karimi, K. J. (1985). Real-time voltage phasor measurements for static state estimation. IEEE Transactions on Power Apparatus and Systems, 104(11), 3098–3107.CrossRefGoogle Scholar
  10. 10.
    Phadke, A. G., Thorp, J. S., & Karimi, K. J. (1986). State estimation with phasor measurements. IEEE Transactions on Power Systems, 1(1), 233–241.CrossRefGoogle Scholar
  11. 11.
    Zhou, M., et al. (2006). An alternative for Including Phasor measurements in State Estimation. IEEE Transactions on Power Systems, 21(4), 1930–1937.CrossRefGoogle Scholar
  12. 12.
    Korevaar, N. (2002). Incidence is no coincidence. University of Utah Math Circle, October 2002.Google Scholar
  13. 13.
    Heydt, G. T., Liu, C. C., Phadke, A. G., & Vittal, V. (2001). Solution for the crisis in electric power supply. IEEE Computer Applications in Power, 14(3), 22–30.CrossRefGoogle Scholar
  14. 14.
    Pal, A., Sanchez, G. A., Centeno, V. A., & Thorp, J. S. (2014). A PMU placement scheme ensuring real-time monitoring of critical buses of the network. IEEE Transactions on Power Delivery, 29(2), 510–517.CrossRefGoogle Scholar
  15. 15.
    Dua, D., Dambhare, S. S., Gajbhiye, R. K., & Soman, S. A. (2008). Optimal multistage scheduling of PMU placement: An ILP approach. IEEE Transactions on Power Delivery, 23(4), 1812–1820.CrossRefGoogle Scholar
  16. 16.
    Pal, A. (2014). PMU-based applications for improved monitoring and protection of power systems. Ph.D. dissertation, Electrical and Computer Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, April 2014.Google Scholar
  17. 17.
    Jeffers, R. (2007). Wide area state estimation techniques using phasor measurement data. Virginia Tech Report prepared for Tennessee Valley Authority, March 2007.Google Scholar
  18. 18.
    Xu, B., Yoon, Y. J., & Abur, A. (2005). Optimal placement and utilization of phasor measurements for state estimation. In Proceedings of 15th Power Systems Computation Conference (PSCC), Liege, Belgium (pp. 1–6), August 22–26, 2005.Google Scholar
  19. 19.
    Wu, Z., Sun, R., & Phadke, A. G. (2012). Three-phase calibration of instrument transformers with synchronized phasor measurements. In IEEE PES Innovative Smart Grid Technologies Conference.Google Scholar
  20. 20.
    Zhou, M. (2008). Phasor measurement unit calibration and applications in state estimation. Ph.D. dissertation, Virginia Tech, March 2008.Google Scholar
  21. 21.
    Wu, Z. (2012). Synchronized phasor measurement applications in three-phase power systems. Ph.D. dissertation, Virginia Tech.Google Scholar
  22. 22.
    Debs, A. S., & Larson, R. E. (1970). A dynamic estimator for tracking the state of a power system. IEEE Transactions on Power Apparatus Systems, PAS-893(7), 1670–1678.Google Scholar
  23. 23.
    Gelb, A. (1974). Applied optimal filtering. Massachusetts: MIT Press.Google Scholar
  24. 24.
    Abbasy, N. H., & Ismail, H. M. (2009). A unified approach for the optimal PMU location for power system state estimation. IEEE Transactions on Power Systems, 24(2), 806–813.CrossRefGoogle Scholar
  25. 25.
    Pilay, P., Phadke, A. G., Linders, D. K., & Thorp, J. S. (1987). State estimation for a synchronous machine: Observer and Kalman filter approach. In Princeton Conference.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations