Protection Systems with Phasor Inputs

Part of the Power Electronics and Power Systems book series (PEPS)


Synchronized phasor measurements have offered solutions to a number of vexing protection problems. These include the protection of series compensated lines, protection of multiterminal lines, and the inability to satisfactorily set out-of-step relays. In many situations, the reliable measurement of a remote voltage or current on the same reference as local variables has made a substantial improvement possible.


Power System Voltage Collapse Differential Protection Distance Relay Hide Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Horowitz, S. H., Phadke, A. G., & Thorp, J. S. (1988). Adaptive transmission system relaying. IEEE Transactions on Power Delivery, 3(4), 1436–1445.CrossRefGoogle Scholar
  2. 2.
    Rockefeller, G. D., Wagner, C. L., Linders, J. R., Hicks, K. L., & Rizi, D. T. (1988). Adaptive transmission relaying concepts for improved performance. IEEE Transactions on Power Delivery, 3(4), 1446–1458.CrossRefGoogle Scholar
  3. 3.
    Stevenson, W. D. (1980). Elements of power system analysis. New York: McGraw-Hill.Google Scholar
  4. 4.
    ABB Application manual, Line differential protection IED RED 670 ANSI.Google Scholar
  5. 5.
    Hedding, R. A., Mekic, F. (2007). Advanced multi-terminal line current differential relaying and applications. Protective Relay Engineers, 60th Annual Conference, March 2007, pp. 102–109.Google Scholar
  6. 6.
    Sidhu, T. S., Baltazar, D. S., Palomino, R. M., & Sachdev, M. S. (2004). A new approach for calculating zone-2 setting of distance relays and its use in an adaptive protection system. IEEE Transactions on Power Delivery, 10(1), 70–77.CrossRefGoogle Scholar
  7. 7.
    Genesereth, M., & Ketchpel, S. (1994). Software agents. Communications of the ACM 37(7), 48–52, 147.Google Scholar
  8. 8.
    Coury, D., Thorp, J., Hopkinson, K., & Birman, K. (2001). Improving the protection of EHV teed feeders using local agents. Developments in Power System Protection, Conference Publication, No. 479, IEE.Google Scholar
  9. 9.
    Thorp, J. S., Phadke, A. G., Horowitz, S. H., & Begovic, M. M. (1988). “Some applications of phasor measurements to adaptive protection. IEEE Transactions on PAS, 3(2), 791–798.Google Scholar
  10. 10.
    Thorp, J. S., et al. (1993). Feasibility of adaptive protection and control. IEEE Transactions on Power Delivery, 8(3), 975–983.CrossRefGoogle Scholar
  11. 11.
    Centeno, V., Phadke, A. G., Edris, A., Benton, J., Gaudi, M., & Michel, G. (1997). An adaptive out-of-step relay [for power system protection]. IEEE Transactions on Power Delivery, 12(1), 61–71.CrossRefGoogle Scholar
  12. 12.
    Centeno, V., Phadke, A. G., Edris, A. (1997). Adaptive out-of-step relay with phasor measurement, developments in power system protection. Sixth International Conference on (Conf. Pub l. No. 434), March 25–27, pp. 210–213.Google Scholar
  13. 13.
    Centeno, V., Phadke, A. G., Edris, A., Benton, J., & Michel, G. (1997). An adaptive out-of-step relay. IEEE Power Engineering Review, 17(1), 39–40.CrossRefGoogle Scholar
  14. 14.
    Centeno, V., de la Ree, J., Phadke, A. G., Michel, G., Murphy, R. J., & Burnett, R. O., Jr. (1993). Adaptive out-of-step relaying using phasor measurement techniques. Computer Applications in Power, IEEE, 6(4), 12–17.CrossRefGoogle Scholar
  15. 15.
    Phadke, A. G., & Thorp, J. S. (1988). Computer relaying for power systems. Somerset, England: Research Studies Press.Google Scholar
  16. 16.
    Bretas, A. S., & Phadke, A. G. (2003). Artificial neural networks in power system restoration. IEEE Transactions On Power Delivery, 18(4), 1181.CrossRefGoogle Scholar
  17. 17.
    1186System Disturbance on November 4, 2006, UCTE, February 2007, available at
  18. 18.
    Developments in UCTE and Switzerland, W. Sattinger, WAMC course at ETH Zürich, 30 August–1 September 2005.Google Scholar
  19. 19.
    Horowitz, S. H., & Phadke, A. G. (2003). Boosting immunity to blackouts. Power and Energy Magazine, IEEE, 1(5), 47–53.CrossRefGoogle Scholar
  20. 20.
    Horowitz, S. H., & Phadke, A. G. (2006). Third Zone Revisited. IEEE Transactions on Power Delivery, 21(1), 23–29.CrossRefGoogle Scholar
  21. 21.
    Phadke, A. G., Novosel, D., & Horowitz, S. H. (2007). Wide area measurement applications in functionally integrated power systems. CIGRE B-5 Colloquium, Madrid, Spain.Google Scholar
  22. 22.
  23. 23.
    Taylor, C. W. (1999). Improving grid behavior. IEEE Spectrum, 36(6), 40–45.CrossRefGoogle Scholar
  24. 24.
    Tamronglak, S., Horowitz, S. H., Phadke, A. G., & Thorp, J. S. (1996). Anatomy of power system blackouts: preventive relaying strategies. Power Delivery, IEEE Transactions on, 11(2), 708–715.CrossRefGoogle Scholar
  25. 25.
    Elizondo, D. C., & De La Ree, J. (2004). Analysis of hidden failures of protection schemes in large interconnected power systems. Power Engineering Society General Meeting, IEEE, 1, 107–114.Google Scholar
  26. 26.
    De La Ree, J., & Elizondo, D. C. (2004). A methodology to assess the impact of hidden failures in protection schemes. Power Systems Conference and Exposition, IEEE PES, 3, 1782–1783.Google Scholar
  27. 27.
    Phadke, A. G., & Thorp, J. S. (1996). Expose hidden failures to prevent cascading outages in power systems. Computer Applications in Power, IEEE, 9(3), 20–23.CrossRefGoogle Scholar
  28. 28.
    Elizondo, D. C., De La Ree, J., Phadke, A. G., & Horowitz, S. (2001). Hidden failures in protection systems and their impact on wide-area disturbances. Power Engineering Society Winter Meeting, IEEE, 2, 710–714.Google Scholar
  29. 29.
    Wang, H., & Thorp, J. S. (2001). Optimal locations for protection system enhancement: A simulation of cascading outages. IEEE Transactions on Power Delivery, 16(4), 528–533.CrossRefGoogle Scholar
  30. 30.
    Dobson, I., Chen, J., Thorp, J. S., Carreras, B. A., & Newman, D. E. (2002). Examining criticality of blackouts in power system models with cascading events. Proceedings of the 35th Annual Hawaii International Conference on System Sciences, January 2002.Google Scholar
  31. 31.
    Horowitz, Stanley H., & Phadke, Arun G. (2008). Computer Relaying for Power Systems (3rd ed.). RSP: John Wiley & Sons. (book).CrossRefGoogle Scholar
  32. 32.
    Westinghouse. (1976). Applied protective relaying. Westinghouse Electric Corporation, Newark, N.J. (Chapter 19).Google Scholar
  33. 33.
    Begovic, M., Novosel, D., Karlsson, D., Henville, C., & Michel, G. (2005). Wide-area protection and emergency control. Proceedings of the IEEE, 93(5), 876–891.CrossRefGoogle Scholar
  34. 34.
    Madani, V., Novosel, D., Apostolov, A., Corsi, S. (2004). Innovative solutions for preventing wide area disturbance propagation. IREP Symposium for Bulk Power Systems Dynamics and Control VI, Cortina d’Ampezzo, Italy, August 2004.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations