Advertisement

Regulation of Shiga Toxin Production

  • Christopher J. Silva
  • David L. Brandon
  • Craig B. Skinner
  • Xiaohua He
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Although Shiga toxins are produced by particular E. coli serotypes, the genes transcribed, as well as the timing and quantity of transcription, are determined by lambdoid phages (phages related to phage λ) that infect those serotypes. A lambdoid phage is referred to as temperate when it integrates into a host cell genome and replicates its DNA “lysogenically” (as the cell replicates its DNA). A stressed cell detects DNA damage and figuratively sends out an “SOS.” The phages have a sophisticated mechanism that detects the host cell SOS response to DNA damage and responds by replicating “lytically” (with lysis of the host cell). Each “Stx-phage” has one Shiga toxin operon, composed of genes encoding the Shiga toxin StxA and StxB subunits. However, an individual Stx-phage may integrate into a bacterial chromosome more than once, and different species of Stx-phage can infect a bacterium simultaneously. Both the multiplicity of infection and recombination events permit a single host to produce more than one type or variant of Shiga toxin, each produced under the control of its own phage. Additional transposable elements (transposons) from the bacterial host add to this genetic diversity, and all levels of this diversity are transmissible to other bacterial hosts. To combat phages, bacterial hosts have a primitive adaptive immune system that employs clustered, regularly-interspaced, short palindromic repeats (CRISPR) and the CRISPR-associated genes (CAS). CRISPR/CAS can inactivate infecting Stx-phages.

Keywords

Lytic replication Shiga toxin-producing bacteriophages SOS response Transposons Integrons CRISPER/CAS Lambdoid phages Phage lambda Superinfection Pathogenicity islands 

References

  1. Acheson DW, Reidl J, Zhang X, Keusch GT, Mekalanos JJ, Waldor MK (1998) In vivo transduction with Shiga toxin 1-encoding phage. Infect Immun 66(9):4496–4498PubMedPubMedCentralGoogle Scholar
  2. Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Brief review. Arch Virol 146(5):843–857CrossRefPubMedGoogle Scholar
  3. Allison HE (2007) Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol 2(2):165–174CrossRefPubMedGoogle Scholar
  4. Allison HE, Sergeant MJ, James CE, Saunders JR, Smith DL, Sharp RJ, Marks TS, McCarthy AJ (2003) Immunity profiles of wild-type and recombinant Shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens. Infect Immun 71(6):3409–3418CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5(5):e1000408CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712CrossRefPubMedGoogle Scholar
  7. Bennett PM (2004) Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. In: Woodford N, Johnson AP (eds) Genomics, proteomics, and clinical bacteriology. Humana Press, Totowa, NJ, pp 71–114CrossRefGoogle Scholar
  8. Beutin L, Hammerl JA, Strauch E, Reetz J, Dieckmann R, Kelner-Burgos Y, Martin A, Miko A, Strockbine NA, Lindstedt BA, Horn D, Monse H, Huettel B, Muller I, Stuber K, Reinhardt R (2012) Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol 86(19):10444–10455CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonanno L, Petit MA, Loukiadis E, Michel V, Auvray F (2016) Heterogeneity in induction level, infection ability, and morphology of Shiga toxin-encoding phages (Stx phages) from dairy and human Shiga toxin-producing Escherichia coli O26:H11 isolates. Appl Environ Microbiol 82(7):2177–2186CrossRefPubMedPubMedCentralGoogle Scholar
  10. Butler T (2012) Haemolytic uraemic syndrome during shigellosis. Trans R Soc Trop Med Hyg 106(7):395–399CrossRefPubMedGoogle Scholar
  11. Calderwood SB, Mekalanos JJ (1987) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol 169(10):4759–4764CrossRefPubMedPubMedCentralGoogle Scholar
  12. Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, Zurita I, Breitbart M, Bartlett D, Azam F, Rohwer F (2006) Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett 261(1):141–149CrossRefPubMedGoogle Scholar
  13. Casjens SR, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology 479–480:310–330CrossRefPubMedGoogle Scholar
  14. Cornick NA, Helgerson AF, Mai V, Ritchie JM, Acheson DW (2006) In vivo transduction of an Stx-encoding phage in ruminants. Appl Environ Microbiol 72(7):5086–5088CrossRefPubMedPubMedCentralGoogle Scholar
  15. Creuzburg K, Recktenwald J, Kuhle V, Herold S, Hensel M, Schmidt H (2005) The Shiga toxin 1-converting bacteriophage BP-4795 encodes an NleA-like type III effector protein. J Bacteriol 187(24):8494–8498CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, Enberg J, Petersen AM, Olesen B, Gerner-Smidt P, Molbak K (2004) Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 10(5):842–847CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fogg PC, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, Allison HE (2007) Identification of multiple integration sites for Stx-phage Phi24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153(Pt 12):4098–4110CrossRefPubMedGoogle Scholar
  18. Fogg PC, Saunders JR, McCarthy AJ, Allison HE (2012) Cumulative effect of prophage burden on Shiga toxin production in Escherichia coli. Microbiology 158(Pt 2):488–497CrossRefPubMedGoogle Scholar
  19. Gamage SD, Strasser JE, Chalk CL, Weiss AA (2003) Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect Immun 71(6):3107–3115CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gamage SD, Patton AK, Strasser JE, Chalk CL, Weiss AA (2006) Commensal bacteria influence Escherichia coli O157:H7 persistence and Shiga toxin production in the mouse intestine. Infect Immun 74(3):1977–1983CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garcia-Aljaro C, Muniesa M, Jofre J, Blanch AR (2006) Newly identified bacteriophages carrying the stx2g Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiol Lett 258(1):127–135CrossRefPubMedGoogle Scholar
  22. Garcia-Aljaro C, Muniesa M, Jofre J, Blanch AR (2009) Genotypic and phenotypic diversity among induced, stx2-carrying bacteriophages from environmental Escherichia coli strains. Appl Environ Microbiol 75(2):329–336CrossRefPubMedGoogle Scholar
  23. Greco KM, McDonough MA, Butterton JR (2004) Variation in the Shiga toxin region of 20th-century epidemic and endemic Shigella dysenteriae 1 strains. J Infect Dis 190(2):330–334CrossRefPubMedGoogle Scholar
  24. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8(1):11–22CrossRefPubMedGoogle Scholar
  25. Hussein HS, Bollinger LM (2005) Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J Food Prot 68(10):2224–2241CrossRefPubMedGoogle Scholar
  26. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  27. James CE, Stanley KN, Allison HE, Flint HJ, Stewart CS, Sharp RJ, Saunders JR, McCarthy AJ (2001) Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl Environ Microbiol 67(9):4335–4337CrossRefPubMedPubMedCentralGoogle Scholar
  28. Johansen BK, Wasteson Y, Granum PE, Brynestad S (2001) Mosaic structure of Shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lambdoid phage genomes. Microbiology 147(Pt 7):1929–1936CrossRefPubMedGoogle Scholar
  29. Karmali MA (1989) Infection by verocytotoxin-producing Escherichia coli. Clin Microbiol Rev 2(1):15–38CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kimmitt PT, Harwood CR, Barer MR (1999) Induction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet 353(9164):1588–1589CrossRefPubMedGoogle Scholar
  31. Koch C, Hertwig S, Lurz R, Appel B, Beutin L (2001) Isolation of a lysogenic bacteriophage carrying the stx(1(OX3)) gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J Clin Microbiol 39(11):3992–3998CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kohler B, Karch H, Schmidt H (2000) Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. Microbiology 146(Pt 5):1085–1090CrossRefPubMedGoogle Scholar
  33. Koitabashi T, Vuddhakul V, Radu S, Morigaki T, Asai N, Nakaguchi Y, Nishibuchi M (2006) Genetic characterization of Escherichia coli O157: H7/- strains carrying the stx2 gene but not producing Shiga toxin 2. Microbiol Immunol 50(2):135–148CrossRefPubMedGoogle Scholar
  34. Kruger A, Lucchesi PM (2015) Shiga toxins and stx phages: highly diverse entities. Microbiology 161(Pt 3):451–462CrossRefPubMedGoogle Scholar
  35. Kruger A, Lucchesi PM, Parma AE (2011) Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity. Appl Environ Microbiol 77(1):73–79CrossRefPubMedGoogle Scholar
  36. Los JM, Los M, Wegrzyn G, Wegrzyn A (2009) Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog 47(6):289–298CrossRefPubMedGoogle Scholar
  37. Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T (1999) Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J Bacteriol 181(7):2257–2260PubMedPubMedCentralGoogle Scholar
  38. McDonough MA, Butterton JR (1999) Spontaneous tandem amplification and deletion of the shiga toxin operon in Shigella dysenteriae 1. Mol Microbiol 34(5):1058–1069CrossRefPubMedGoogle Scholar
  39. Muniesa M, Jofre J (1998) Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl Environ Microbiol 64(7):2443–2448PubMedPubMedCentralGoogle Scholar
  40. Muniesa M, Lucena F, Jofre J (1999) Comparative survival of free shiga toxin 2-encoding phages and Escherichia coli strains outside the gut. Appl Environ Microbiol 65(12):5615–5618PubMedPubMedCentralGoogle Scholar
  41. Muniesa M, Recktenwald J, Bielaszewska M, Karch H, Schmidt H (2000) Characterization of a shiga toxin 2e-converting bacteriophage from an Escherichia coli strain of human origin. Infect Immun 68(9):4850–4855CrossRefPubMedPubMedCentralGoogle Scholar
  42. O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226(4675):694–696CrossRefPubMedGoogle Scholar
  43. Ogura Y, Ooka T, Asadulghani TJ, Nougayrede JP, Kurokawa K, Tashiro K, Tobe T, Nakayama K, Kuhara S, Oswald E, Watanabe H, Hayashi T (2007) Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 8(7):R138CrossRefPubMedPubMedCentralGoogle Scholar
  44. Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF (2010) A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45(3):171–184CrossRefPubMedPubMedCentralGoogle Scholar
  45. Paton AW, Paton JC (1996) Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J Clin Microbiol 34(2):463–465PubMedPubMedCentralGoogle Scholar
  46. Paton JC, Paton AW (1997) Instability of a Shiga toxin type 2 gene in Enterobacter cloacae. J Clin Microbiol 35(7):1917–1917PubMedPubMedCentralGoogle Scholar
  47. Pirro F, Wieler LH, Failing K, Bauerfeind R, Baljer G (1995) Neutralizing antibodies against Shiga-like toxins from Escherichia coli in colostra and sera of cattle. Vet Microbiol 43(2–3):131–141CrossRefPubMedGoogle Scholar
  48. Plunkett G 3rd, Rose DJ, Durfee TJ, Blattner FR (1999) Sequence of Shiga toxin 2 phage 933 W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 181(6):1767–1778PubMedPubMedCentralGoogle Scholar
  49. Probert WS, McQuaid C, Schrader K (2014) Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J Clin Microbiol 52(7):2346–2351CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pruimboom-Brees IM, Morgan TW, Ackermann MR, Nystrom ED, Samuel JE, Cornick NA, Moon HW (2000) Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc Natl Acad Sci U S A 97(19):10325–10329CrossRefPubMedPubMedCentralGoogle Scholar
  51. Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–367PubMedGoogle Scholar
  52. Schmidt H, Montag M, Bockemuhl J, Heesemann J, Karch H (1993) Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect Immun 61(2):534–543PubMedPubMedCentralGoogle Scholar
  53. Scotland SM, Smith HR, Willshaw GA, Rowe B (1983) Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. Lancet 2(8343):216CrossRefPubMedGoogle Scholar
  54. Shao Y, Wang IN (2009) Effect of late promoter activity on bacteriophage lambda fitness. Genetics 181(4):1467–1475CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shimizu T, Ohta Y, Noda M (2009) Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms. Infect Immun 77(7):2813–2823CrossRefPubMedPubMedCentralGoogle Scholar
  56. Smith HW, Green P, Parsell Z (1983) Vero cell toxins in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chickens and pigs. J Gen Microbiol 129(10):3121–3137PubMedGoogle Scholar
  57. Smith DL, Rooks DJ, Fogg PC, Darby AC, Thomson NR, McCarthy AJ, Allison HE (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13:311. doi: 10.1186/1471-2164-13-311 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186CrossRefPubMedGoogle Scholar
  59. Strauch E, Schaudinn C, Beutin L (2004) First-time isolation and characterization of a bacteriophage encoding the Shiga toxin 2c variant, which is globally spread in strains of Escherichia coli O157. Infect Immun 72(12):7030–7039CrossRefPubMedPubMedCentralGoogle Scholar
  60. Strauch E, Hammerl JA, Konietzny A, Schneiker-Bekel S, Arnold W, Goesmann A, Puhler A, Beutin L (2008) Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7. Infect Immun 76(12):5466–5477CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sung LM, Jackson MP, O’Brien AD, Holmes RK (1990) Transcription of the Shiga-like toxin type II and Shiga-like toxin type II variant operons of Escherichia coli. J Bacteriol 172(11):6386–6395CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takeda Y, Folkmanis A, Echols H (1977) Cro regulatory protein specified by bacteriophage lambda. Structure, DNA-binding, and repression of RNA synthesis. J Biol Chem 252(17):6177–6183PubMedGoogle Scholar
  63. Teel LD, Melton-Celsa AR, Schmitt CK, O’Brien AD (2002) One of two copies of the gene for the activatable Shiga toxin type 2d in Escherichia coli O91:H21 strain B2F1 is associated with an inducible bacteriophage. Infect Immun 70(8):4282–4291CrossRefPubMedPubMedCentralGoogle Scholar
  64. Toth I, Schmidt H, Dow M, Malik A, Oswald E, Nagy B (2003) Transduction of porcine enteropathogenic Escherichia coli with a derivative of a shiga toxin 2-encoding bacteriophage in a porcine ligated ileal loop system. Appl Environ Microbiol 69(12):7242–7247CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tyler JS, Livny J, Friedman DI (2005) Lambdoid phages and Shiga toxin. In: Waldor MK, Friedman DI, Adhya SL (eds) Phages: their role in pathogenesis and biotechnology. ASM Press, Washington, DC, pp 131–164CrossRefGoogle Scholar
  66. Tyler JS, Beeri K, Reynolds JL, Alteri CJ, Skinner KG, Friedman JH, Eaton KA, Friedman DI (2013) Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 9(3):e1003236CrossRefPubMedPubMedCentralGoogle Scholar
  67. Unkmeir A, Schmidt H (2000) Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun 68(9):4856–4864CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK, Friedman DI (2001) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183(6):2081–2085CrossRefPubMedPubMedCentralGoogle Scholar
  69. Whittam TS, Wachsmuth IK, Wilson RA (1988) Genetic evidence of clonal descent of Escherichia coli O157:H7 associated with hemorrhagic colitis and hemolytic uremic syndrome. J Infect Dis 157(6):1124–1133CrossRefPubMedGoogle Scholar
  70. Yin S, Jensen MA, Bai J, Debroy C, Barrangou R, Dudley EG (2013) The evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in clustered regularly interspaced short palindromic repeat (CRISPR) spacer composition. Appl Environ Microbiol 79(18):5710–5720CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yin S, Rusconi B, Sanjar F, Goswami K, Xiaoli L, Eppinger M, Dudley EG (2015) Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 16(1):733CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW (2000) Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181(2):664–670CrossRefPubMedGoogle Scholar
  73. Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Wagner D, Gaines S, Meng J (2001) Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 67(4):1558–1564CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher J. Silva
    • 1
  • David L. Brandon
    • 1
  • Craig B. Skinner
    • 1
  • Xiaohua He
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research ServiceWestern Regional Research CenterAlbanyUSA

Personalised recommendations