Advertisement

Smart Card Security

  • Michael TunstallEmail author
Chapter

Abstract

In this chapter, the various attacks and countermeasures that apply to secure smart card applications are described. This chapter focuses on the attacks that could affect cryptographic algorithms, since the security of many applications is dependent on the security of these algorithms. Nevertheless, how these attacks may be applied to other security mechanisms is also described. The aim of this chapter is to demonstrate that a careful evaluation of embedded software is required to produce a secure smart card application.

Keywords

Embedded software Fault analysis Side channel analysis Smart card security 

References

  1. 1.
    Akkar, M.-L. and Giraud, C. (2001). An implementation of DES and AES secure against some attacks. In Koç, C. K., Naccache, D., and Paar, C., editors, Cryptographic Hardware and Embedded SystemsCHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer-Verlag.Google Scholar
  2. 2.
    American National Standards Institute (1985). Financial Institution Key Management (Wholesale). American National Standards Institute.Google Scholar
  3. 3.
    Anderson, R. and Kuhn, M. (1996). Tamper resistance—a cautionary note. In Proceedings of the Second USENIX Workshop of Electronic Commerce, pages 1–11.Google Scholar
  4. 4.
    Anderson, R. and Kuhn, M. (1997). Low cost attacks on tamper resistant devices. In Christianson, B., Crispo, B., Lomas, T. M. A., and Roe, M., editors, Security Protocols, volume 1361 of Lecture Notes in Computer Science, pages 125–136. Springer-Verlag.Google Scholar
  5. 5.
    Aumüller, C., Bier, P., Hofreiter, P., Fischer, W., and Seifert, J.-P. (2002). Fault attacks on RSA with CRT: Concrete results and practical countermeasures. In Kaliski, B. S., Koç, C. K., and Paar, C., editors, Cryptographic Hardware and Embedded SystemsCHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 260–275. Springer-Verlag.Google Scholar
  6. 6.
    Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whelan, C. (2006). The sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382.CrossRefGoogle Scholar
  7. 7.
    Biham, E. and Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. In Menezes, A. and Vanstone, S., editors, Advances in CryptologyCRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 2?-21. Springer-Verlag.Google Scholar
  8. 8.
    Biham, E. and Shamir, A. (1997). Differential fault analysis of secret key cryptosystems. In Kaliski, B. S., editor, Advances in CryptologyCRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer-Verlag.Google Scholar
  9. 9.
    Blömer, J. and Seifert, J.-P. (2003). Fault based cryptanalysis of the advanced encryption standard (AES). In Wright, R. N., editor, Financial CryptographyFC 2003, volume 2742 of Lecture Notes in Computer Science, pages 162–181. Springer-Verlag.Google Scholar
  10. 10.
    Boneh, D., DeMillo, R. A., and Lipton, R. J. (1997). On the importance of checking computations. In Fumy, W., editor, Advances in CryptologyEUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag.Google Scholar
  11. 11.
    Brier, E., Clavier, C., and Olivier, F. (2004). Correlation power analysis with a leakage model. In Joye, M. and Quisquater, J.-J., editors, Cryptographic Hardware and Embedded SystemsCHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer-Verlag.Google Scholar
  12. 12.
    Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. (1999). Towards approaches to counteract power-analysis attacks. In Wiener, M., editor, Advances in CryptologyCRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer-Verlag.Google Scholar
  13. 13.
    Chevallier-Mames, B., Ciet, M., and Joye, M. (2004). Low-cost solutions for preventing simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers, 53(6):760–768.CrossRefzbMATHGoogle Scholar
  14. 14.
    Clavier, C., Coron, J.-S., and Dabbous, N. (2000). Differential power analysis in the presence of hardware countermeasures. In Koç, C. K. and Paar, C., editors, Cryptographic Hardware and Embedded SystemsCHES 2000, volume 1965 of Lecture Notes in Computer Science, pages 252–263. Springer-Verlag.Google Scholar
  15. 15.
    Dobraunig, C., Eichlseder, M., Mangard, S. and Mendel, F. (2014). On the Security of Fresh Re-keying to Counteract Side-Channel and Fault Attacks. In Joye, M. and Moradi, A., editors, Smart Card Research and Advanced Applications—13th International Conference, CARDIS 2014, volume 8968 of Lecture Notes in Computer Science, pages 233–244. Springer-Verlag.Google Scholar
  16. 16.
    Fouillat, P. (1990). Contribution à l’étude de l’interaction entre un faisceau laser et un milieu semiconducteur, Applications à l’étude du Latchup et à l’analyse d’états logiques dans les circuits intégrés en technologie CMOS. PhD thesis, University of Bordeaux.Google Scholar
  17. 17.
    Gandolfi, K., Mourtel, C., and Olivier, F. (2001). Electromagnetic analysis: Concrete results. In Koç, C. K., Naccache, D., and Paar, C., editors, Cryptographic Hardware and Embedded SystemsCHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer-Verlag.Google Scholar
  18. 18.
    Genkin, D., Pachmanov, L., Pipman, I., Tromer, E. (2015). Stealing Keys from PCs Using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation. In Güneysu, G. and Handschuh, H., editors, Cryptographic Hardware and Embedded SystemsCHES 2015, volume 9293 of Lecture Notes in Computer Science, pages 207–228. Springer-Verlag.Google Scholar
  19. 19.
    Giraud, C. and Thiebeauld, H. (2004). A survey on fault attacks. In Deswarte, Y. and Kalam, A. A. El, editors, Smart Card Research and Advanced Applications VI18th IFIP World Computer Congress, pages 159–176. Kluwer Academic.Google Scholar
  20. 20.
    Goodwill, G., Jun, B., Jaffe, J. and Rohatgi, P. (2011). A testing methodology for side-channel resistance validation. In The Non-Invasive Attack Testing Workshop—NIAT 2011.Google Scholar
  21. 21.
    Govindavajhala, S. and Appel, A. W. (2003). Using memory errors to attack a virtual machine. In IEEE Symposium on Security and Privacy 2003, pages 154–165.Google Scholar
  22. 22.
    Gutmann, P. (2004). Security Architecture. Springer.Google Scholar
  23. 23.
    Habing, D. H. (1992). The use of lasers to simulate radiation-induced transients in semiconductor devices and circuits. IEEE Transactions On Nuclear Science, 39:1647–1653.CrossRefGoogle Scholar
  24. 24.
    International Organization for Standardization (1997). ISO/IEC 7816–3 Information technology—Identification cards—Integrated circuit(s) cards with contacts – Part 3: Electronic signals and transmission protocols. International Organization for Standardization.Google Scholar
  25. 25.
    International Organization for Standardization (1999). ISO/IEC 7816–2 Identification cards—Integrated circuit cards—Part 2: Cards with contacts—Dimensions and location of the contacts. International Organization for Standardization.Google Scholar
  26. 26.
    Joye, M. and Olivier, F. (2005). Side-channel attacks. In van Tilborg, H., editor, Encyclopedia of Cryptography and Security, pages 571–576. Kluwer Academic Publishers.Google Scholar
  27. 27.
    Joye, M. and Tunstall, M., Eds (2015). Fault Analysis in Cryptography. Springer.Google Scholar
  28. 28.
    Kahn, D. (1997). The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet. Simon & Schuster Inc., second edition.Google Scholar
  29. 29.
    Knuth, D. (2001). The Art of Computer Programming, volume 2, Seminumerical Algorithms. Addison–Wesley, third edition.zbMATHGoogle Scholar
  30. 30.
    Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Koblitz, N., editor, Advances in CryptologyCRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag.Google Scholar
  31. 31.
    Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Wiener, M. J., editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag.Google Scholar
  32. 32.
    Kommerling, O. and Kuhn, M. (1999). Design principles for tamper resistant smartcard processors. In USENIX Workshop on Smartcard Technology, pages 9–20.Google Scholar
  33. 33.
    Longo Galea, J., De Mulder, E., Page, D. and Tunstall, M. (2015). SoC It to EM: ElectroMagnetic Side-Channel Attacks on a Complex System-on-Chip. In Güneysu, G. and Handschuh, H., editors, Cryptographic Hardware and Embedded SystemsCHES 2015, volume 9293 of Lecture Notes in Computer Science, pages 620–640. Springer-Verlag.Google Scholar
  34. 34.
    Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis AttacksRevealing the Secrets of Smart Cards. Springer-Verlag.Google Scholar
  35. 35.
    May, T. and Woods, M. (1978). A new physical mechanism for soft errors in dynamic memories. In 16th International Reliability Physics Symposium.Google Scholar
  36. 36.
    Menezes, A., van Oorschot, P., and Vanstone, S. (1997). Handbook of Applied Cryptography. CRC Press.Google Scholar
  37. 37.
    Messerges, T. S. (2000). Power Analysis Attacks and Countermeasures for Cryptographic Algorithms. PhD thesis, University of Illinois, Chicago.Google Scholar
  38. 38.
    Meyer, C. (2000). Private communication. Carl Meyer was one of the designers of the DES algorithm.Google Scholar
  39. 39.
    MIPS-Technologies (2001). MIPS\(^{\rm TM}\) architecture for programmers volume I: Introduction to the MIPS32\(^{\rm TM}\) architecture. Technical Report MD00082, Revision 0.95.Google Scholar
  40. 40.
    Murdocca, M. and Heuring, V. P. (2000). Principles of Computer Architecture. Addison-Wesley.Google Scholar
  41. 41.
    Naccache, D., Nguyen, P. Q., Tunstall, M., and Whelan, C. (2005). Experimenting with faults, lattices and the DSA. In Vaudenay, S., editor, Public Key CryptographyPKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 16–28. Springer-Verlag.Google Scholar
  42. 42.
    NIST (1999). Data Encryption Standard (DES) (FIPS-46–3). National Institute of Standards and Technology.Google Scholar
  43. 43.
    NIST (2001). Advanced Encryption Standard (AES) (FIPS-197). National Institute of Standards and Technology.Google Scholar
  44. 44.
    Pouget, V. (2000). Simulation expérimentale par impulsions laser ultra-courtes des effets des radiations ionisantes sur les circuits intégrés. PhD thesis, University of Bordeaux.Google Scholar
  45. 45.
    Quisquater, J.-J. and Samyde, D. (2001). Electromagnetic analysis (EMA): Measures and counter-measures for smart cards. In Attali, I. and Jensen, T. P., editors, Smart Card Programming and Security, International Conference on Research in Smart CardsE-smart 2001, volume 2140 of Lecture Notes in Computer Science, pages 200–210. Springer-Verlag.Google Scholar
  46. 46.
    Rivain, M. (2009). Differential Fault Analysis on DES Middle Rounds. Clavier, C. and Kris, G., editors, Cryptographic Hardware and Embedded SystemsCHES 2009, volume 5747 of Lecture Notes in Computer Science, pages 457–469. Springer-Verlag.Google Scholar
  47. 47.
    Rivest, R., Shamir, A., and Adleman, L. M. (1978). Method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Samyde, D., Skorobogatov, S. P., Anderson, R. J., and Quisquater, J.-J. (2002). On a new way to read data from memory. In Proceedings of the First International IEEE Security in Storage Workshop, pages 65–69.Google Scholar
  49. 49.
    Schneider, T. and Moradi, A. (2015). Leakage Assessment Methodology—A Clear Roadmap for Side-Channel Evaluations. In Güneysu, G. and Handschuh, H., editors, Cryptographic Hardware and Embedded SystemsCHES 2015, volume 9293 of Lecture Notes in Computer Science, pages 495–513. Springer-Verlag.Google Scholar
  50. 50.
    Skorobogatov, S. and Anderson, R. (2002). Optical fault induction attacks. In Kaliski, B. S., Ç. K. Koç, and Paar, C., editors, Cryptographic Hardware and Embedded SystemsCHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 2–12. Springer-Verlag.Google Scholar
  51. 51.
    Skorobogatov, S. P. (2005). Semi-Invasive AttacksA New Approach to Hardware Security Analysis. PhD thesis, University of Cambridge. available at http://www.cl.cam.ac.uk/TechReports/.
  52. 52.
    Tarnovsky, C., (2015) https://en.wikipedia.org/wiki/Christopher_Tarnovsky. Accessed 16 November 2015.
  53. 53.
    Wright, P. (1987). Spycatcher. Heineman.Google Scholar
  54. 54.
    Ziegler, J. (1979). Effect of cosmic rays on computer memories. Science, 206:776–788.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cryptography ResearchSan FranciscoUSA

Personalised recommendations