Skip to main content

Survey on Feature Extraction and Applications of Biosignals

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9605)

Abstract

Biosignals have become an important indicator not only for medical diagnosis and subsequent therapy, but also passive health monitoring. Extracting meaningful features from biosignals can help people understand the human functional state, so that upcoming harmful symptoms or diseases can be alleviated or avoided. There are two main approaches commonly used to derive useful features from biosignals, which are hand-engineering and deep learning. The majority of the research in this field focuses on hand-engineering features, which require domain-specific experts to design algorithms to extract meaningful features. In the last years, several studies have employed deep learning to automatically learn features from raw biosignals to make feature extraction algorithms less dependent on humans. These studies have also demonstrated promising results in a variety of biosignal applications. In this survey, we review different types of biosignals and the main approaches to extract features from the signal in the context of biomedical applications. We also discuss challenges and limitations of the existing approaches, and possible future research.

Keywords

  • Feature extraction
  • Deep learning
  • Biosignals
  • Analytical systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-50478-0_8
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-50478-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

References

  1. Kaniusas, E.: Biomedical Signals and Sensors I. Biological and Medical Physics, Biomedical Engineering. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  2. Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M., Rosenkranz, K., Mandic, D.: The in-the-ear recording concept: user-centered and wearable brain monitoring. IEEE Pulse 3(6), 32–42 (2012)

    CrossRef  Google Scholar 

  3. Yao, H., Marcheselli, C., Afanasiev, A., Lahdesmaki, I., Parviz, B.A.: A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 769–772, February 2012

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2012)

    CrossRef  Google Scholar 

  5. Fisher, R.S., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)

    CrossRef  Google Scholar 

  6. Tao, J., Tan, T.: Affective computing: a review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005). doi:10.1007/11573548_125

    CrossRef  Google Scholar 

  7. Türker, K.S.: Electromyography: some methodological problems and issues. Phy. Ther. 73(10), 698–710 (1993)

    Google Scholar 

  8. Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRS) for psychological experiments. Psychophysiology 49, 1017–1034

    Google Scholar 

  9. Critchley, H.D.: Book review: electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002)

    MathSciNet  CrossRef  Google Scholar 

  10. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transfom. IEEE Trans. Comput. 1, 90–93 (1974)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Polat, K., Güneş, S.: Classification of epileptiform eeg using a hybrid system based on decision tree classifier and fast fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    CrossRef  Google Scholar 

  13. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, JVA 2006, pp. 120–124. IEEE (2006)

    Google Scholar 

  14. Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)

    CrossRef  Google Scholar 

  15. Bengio, Y.: Learning Deep Architectures for AI, vol. 2 (2009)

    Google Scholar 

  16. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks (November 1997), vol. 3361, pp. 255–258 (1995)

    Google Scholar 

  17. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    CrossRef  Google Scholar 

  18. Hush, D., Horne, B.G.: Progress in Supervised Neural Networks: What’s New Since Lip (1993)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    CrossRef  Google Scholar 

  20. Witte, H., Iasemidis, L., Litt, B.: Special issue on epileptic seizure prediction. IEEE Trans. Biomed. Eng. 50(5), 537–539 (2003)

    CrossRef  Google Scholar 

  21. Polat, K., Gunes, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inform. Technol. Biomed. 13(5), 703–710 (2009)

    CrossRef  Google Scholar 

  23. Shoeb, A., Guttag, J.: Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 975–982 (2010)

    Google Scholar 

  24. Kiymik, M.K., Güler, I., Dizibüyük, A., Akin, M.: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7), 603–616 (2005)

    CrossRef  Google Scholar 

  25. Logesparan, L., Casson, A.J., Imtiaz, S.A., Rodriguez-Villegas, E.: Discriminating between best performing features for seizure detection and data selection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 1692–1695 (2013)

    Google Scholar 

  26. Saab, M.E., Gotman, J.: A system to detect the onset of epileptic seizures in scalp EEG. Clin. Neurophysiol. 116(2), 427–442 (2005)

    CrossRef  Google Scholar 

  27. Kuhlmann, L., Burkitt, A.N., Cook, M.J., Fuller, K., Grayden, D.B., Seiderer, L., Mareels, I.M.Y.: Seizure detection using seizure probability estimation: comparison of features used to detect seizures. Ann. Biomed. Eng. 37(10), 2129–2145 (2009)

    CrossRef  Google Scholar 

  28. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)

    CrossRef  Google Scholar 

  29. Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)

    CrossRef  Google Scholar 

  30. Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 512–518 (2008)

    CrossRef  Google Scholar 

  31. Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks 22(10), 1419–1431 (2009)

    CrossRef  Google Scholar 

  32. Zandi, A.S., Javidan, M., Dumont, G.A., Tafreshi, R.: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Biomed. Eng. 57(7), 1639–1651 (2010)

    CrossRef  Google Scholar 

  33. Gandhi, T., Panigrahi, B.K., Bhatia, M., Anand, S.: Expert model for detection of epileptic activity in EEG signature. Expert Syst. Appl. 37(4), 3513–3520 (2010)

    CrossRef  Google Scholar 

  34. Ahammad, N., Fathima, T., Joseph, P.: Detection of epileptic seizure event and onset using EEG. BioMed Research International 2014, p. 7 (2014)

    Google Scholar 

  35. Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N.E., Fernández, S.I., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., Loddenkemper, T.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)

    CrossRef  Google Scholar 

  36. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G.: Epileptic seizures may begin clinical study hours in advance of clinical onset: a report of five patients. Neuron 30(1), 1–14 (2001)

    CrossRef  Google Scholar 

  37. Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D’Havé, M., Adam, C., Renault, B., Varela, F., Baulac, M.: Anticipation of epileptic seizures from standard EEG recordings. Lancet 357(9251), 183–188 (2001)

    CrossRef  Google Scholar 

  38. Le Van Quyen, M., Navarro, V., Martinerie, J., Baulac, M., Varela, F.J.: Toward a neurodynamical understanding of ictogenesis. Epilepsia 44(Suppl 1), 30–43 (2003)

    CrossRef  Google Scholar 

  39. Litt, B., Lehnertz, K.: Seizure prediction and the preseizure period. Current Opinion Neurol. 15(2), 173–177 (2002)

    CrossRef  Google Scholar 

  40. Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126(2), 237–248 (2015)

    CrossRef  Google Scholar 

  41. Sackellares, J.C., Shiau, D.S., Principe, J.C., Yang, M.C.K., Dance, L.K., Suharitdamrong, W., Chaovalitwongse, W.A., Pardalos, P.M., Iasemidis, L.D.: Predictability analysis for an automated seizure prediction algorithm. J. Clin. Neurophysiol. 23(6), 509–520 (2006). Official publication of the American Electroencephalographic Society

    CrossRef  Google Scholar 

  42. Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10), 1761–1770 (2011)

    CrossRef  Google Scholar 

  43. Gadhoumi, K., Lina, J.M., Gotman, J.: Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124(9), 1745–1754 (2013)

    CrossRef  Google Scholar 

  44. Li, S., Zhou, W., Yuan, Q., Liu, Y.: Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 880–886 (2013)

    CrossRef  Google Scholar 

  45. Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T.G., Toumazou, C.: Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PLoS ONE 9(6), e96235 (2014)

    CrossRef  Google Scholar 

  46. Zheng, Y., Wang, G., Li, K., Bao, G., Wang, J.: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125(6), 1104–1111 (2014). Official journal of the International Federation of Clinical Neurophysiology

    CrossRef  Google Scholar 

  47. Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin. Neurophysiol. 116(3), 493–505 (2005)

    CrossRef  Google Scholar 

  48. Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116(3), 569–587 (2005)

    CrossRef  Google Scholar 

  49. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007)

    CrossRef  Google Scholar 

  50. Oppenheimer, S.M., Gelb, A., Girvin, J.P., Hachinski, V.C.: Cardiovascular effects of human insular cortex stimulation. Neurology 42(9), 1727–1732 (1992)

    CrossRef  Google Scholar 

  51. Leutmezer, F., Schernthaner, C., Lurger, S., Potzelberger, K., Baumgartner, C.: Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 44(3), 348–354 (2003)

    CrossRef  Google Scholar 

  52. Opherk, C., Coromilas, J., Hirsch, L.J.: Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res. 52(2), 117–127 (2002)

    CrossRef  Google Scholar 

  53. Di Gennaro, G., Quarato, P.P., Sebastiano, F., Esposito, V., Onorati, P., Grammaldo, L.G., Meldolesi, G.N., Mascia, A., Falco, C., Scoppetta, C., Eusebi, F., Manfredi, M., Cantore, G.: Ictal heart rate increase precedes EEG discharge in drug-resistant mesial temporal lobe seizures. Clin. Neurophysiol. 115(5), 1169–1177 (2004)

    CrossRef  Google Scholar 

  54. Weil, S., Arnold, S., Eisensehr, I., Noachtar, S.: Heart rate increase in otherwise subclinical seizures is different in temporal versus extratemporal seizure onset: Support for temporal lobe autonomic influence. Epileptic Disorders 7(3), 199–204 (2005)

    Google Scholar 

  55. Clancy, R.R., Legido, A., Lewis, D.: Occult neonatal seizures. Epilepsia 29(3), 256–261 (1988)

    CrossRef  Google Scholar 

  56. Murray, D.M., Boylan, G.B., Ali, I., Ryan, C.A., Murphy, B.P., Connolly, S.: Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch. Disease Childhood 93(3), F187–F191 (2008). Fetal And Neonatal Edition

    CrossRef  Google Scholar 

  57. Teixeira, C.A., Direito, B., Feldwisch-Drentrup, H., Valderrama, M., Costa, R.P., Alvarado-Rojas, C., Nikolopoulos, S., Le Van Quyen, M., Timmer, J., Schelter, B., Dourado, A.: EPILAB: a software package for studies on the prediction of epileptic seizures. J. Neurosci. Methods 200(2), 257–271 (2011)

    CrossRef  Google Scholar 

  58. Valderrama, M., Alvarado, C., Nikolopoulos, S., Martinerie, J., Adam, C., Navarro, V., Le Van Quyen, M.: Identifying an increased risk of epileptic seizures using a multi-feature EEG-ECG classification. Biomed. Signal Process. Control 7(3), 237–244 (2012)

    CrossRef  Google Scholar 

  59. Phomsiricharoenphant, W., Ongwattanakul, S., Wongsawat, Y.: The preliminary study of EEG and ECG for epileptic seizure prediction based on Hilbert Huang Transform. In: BMEiCON 2014–7th Biomedical Engineering International Conference, pp. 1–4. IEEE (2015)

    Google Scholar 

  60. Piper, D., Schiecke, K., Leistritz, L., Pester, B., Benninger, F., Feucht, M., Ungureanu, M., Strungaru, R., Witte, H.: Synchronization analysis between heart rate variability and EEG activity before, during, and after epileptic seizure. Biomed. Eng./Biomedizinische Technik 59(4), 343–355 (2014)

    Google Scholar 

  61. Greene, B.R., Boylan, G.B., Reilly, R.B., de Chazal, P., Connolly, S.: Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin. Neurophysiol. 118(6), 1348–1359 (2007)

    CrossRef  Google Scholar 

  62. Güler, N.F., Übeyli, E.D., Güler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)

    CrossRef  Google Scholar 

  63. Supratak, A., Li, L., Guo, Y.: Feature extraction with stacked autoencoders for epileptic seizure detection. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4184–4187 (2014)

    Google Scholar 

  64. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inform. Process. Syst. 19(1), 153 (2007)

    Google Scholar 

  65. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1–4), 201–218 (2000)

    CrossRef  Google Scholar 

  66. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)

    CrossRef  Google Scholar 

  67. Ohayon, M.M.: Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6(2), 97–111 (2002)

    CrossRef  Google Scholar 

  68. Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, public health service, U.S. government printing office, Washington, DC (1968)

    Google Scholar 

  69. Schulz, H.: The AASM manual for the scoring of sleep and associated events (2007)

    Google Scholar 

  70. Yetton, B.D., Niknazar, M., Duggan, K.A., McDevitt, E.A., Whitehurst, L.N., Sattari, N., Mednick, S.C.: Automatic detection of Rapid Eye Movements (REMs): a machine learning approach. J. Neurosci. Methods 259, 72–82 (2015)

    CrossRef  Google Scholar 

  71. Cona, F., Pizza, F., Provini, F., Magosso, E.: An improved algorithm for the automatic detection and characterization of slow eye movements. Med. Eng. Phy. 36(7), 954–961 (2014)

    CrossRef  Google Scholar 

  72. Marshall, H., Robertson, B., Marshall, B., Carno, M.A.: Polysomnography for the Sleep Technologist: Instrumentation, Monitoring, and Related Procedures. Elsevier Health Sciences (2013)

    Google Scholar 

  73. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108(1), 10–19 (2012)

    CrossRef  Google Scholar 

  74. Tsinalis, O., Matthews, P.M., Guo, Y.: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. (2015)

    Google Scholar 

  75. Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.E., Eichenlaub, J.B., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods, pp. 1–12 (2014)

    Google Scholar 

  76. Liang, S.F., Kuo, C.E., Hu, Y.H., Pan, Y.H., Wang, Y.H.: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans. Instrum. Meas. 61(6), 1649–1657 (2012)

    CrossRef  Google Scholar 

  77. Adnane, M., Jiang, Z., Yan, Z.: Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst. Appl. 39(1), 1401–1413 (2012)

    CrossRef  Google Scholar 

  78. Xiao, M., Yan, H., Song, J., Yang, Y., Yang, X.: Sleep stages classification based on heart rate variability and random forest. Biomed. Signal Process. Control 8(6), 624–633 (2013)

    CrossRef  Google Scholar 

  79. Penzel, T., Kantelhardt, J.W., Lo, C.C., Voigt, K., Vogelmeier, C.: Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 28(Suppl 1), S48–S53 (2003). Official publication of the American College of Neuropsychopharmacology

    CrossRef  Google Scholar 

  80. Togo, F., Yamamoto, Y.: Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circulatory Physiol. 280, H17–H21 (2001)

    Google Scholar 

  81. Längkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst. 2012, 1–9 (2012)

    CrossRef  Google Scholar 

  82. Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and non-contact biopotential. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    CrossRef  Google Scholar 

  83. Berthomier, C., Drouot, X., Herman-Stoïca, M., Berthomier, P., Prado, J., Bokar-Thire, D., Benoit, O., Mattout, J., D’Ortho, M.P.: Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep 30(11), 1587–1595 (2007)

    Google Scholar 

  84. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. Aistats 15, 315–323 (2011)

    Google Scholar 

  85. Picard, R.W., Picard, R.: Affective Computing. MIT press, Cambridge (1997)

    CrossRef  Google Scholar 

  86. Picard, R.W.: Affective computing: challenges. Int. J. Hum Comput Stud. 59(1), 55–64 (2003)

    CrossRef  Google Scholar 

  87. Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., Holzinger, A.: Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5614, pp. 615–624. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02707-9_70

    CrossRef  Google Scholar 

  88. Gomez, P., Danuser, B.: Affective and physiological responses to environmental noises and music. Int. J. Psychophysiol. 53(2), 91–103 (2004)

    CrossRef  Google Scholar 

  89. Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261 (1993)

    CrossRef  Google Scholar 

  90. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)

    CrossRef  Google Scholar 

  91. Ververidis, D., Kotropoulos, C.: Automatic speech classification to five emotional states based on gender information. In: 12th European Signal Processing Conference, pp. 341–344. IEEE (2004)

    Google Scholar 

  92. Giakoumis, D., Tzovaras, D., Moustakas, K., Hassapis, G.: Automatic recognition of boredom in video games using novel biosignal moment-based features. IEEE Trans. Affective Comput. 2(3), 119–133 (2011)

    CrossRef  Google Scholar 

  93. Yannakakis, G.N., Hallam, J.: Entertainment modeling through physiology in physical play. Int. J. Hum Comput Stud. 66(10), 741–755 (2008)

    CrossRef  Google Scholar 

  94. Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A.: On applying approximate entropy to ECG signals for knowledge discovery on the example of big sensor data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 646–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35236-2_64

    CrossRef  Google Scholar 

  95. Sang-TaeLee, B., ChungyongLee, D.H.: Speaker dependent emotion recognition using speech signals. In: The Proceedings of the 6th International Conference on Spoken Language Processing (2000)

    Google Scholar 

  96. Scherer, K.R.: Vocal affect expression: a review and a model for future research. Psychol. Bull. 99(2), 143 (1986)

    MathSciNet  CrossRef  Google Scholar 

  97. Petrushin, V.A.: Emotion recognition in speech signal: experimental study, development, and application. Studies 3, 4 (2000)

    Google Scholar 

  98. Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 342–346. ACM (1999)

    Google Scholar 

  99. Zimmermann, P., Guttormsen, S., Danuser, B., Gomez, P.: Affective computinga rationale for measuring mood with mouse and keyboard. Int. J. Occup. Safety Ergonomics 9(4), 539–551 (2003)

    CrossRef  Google Scholar 

  100. Mueller, F., Lockerd, A.: Cheese: tracking mouse movement activity on websites, a tool for user modeling. In: CHI 2001 Extended Abstracts on Human Factors in Computing Systems, pp. 279–280. ACM (2001)

    Google Scholar 

  101. Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14(2), 93–118 (2002)

    CrossRef  Google Scholar 

  102. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Sig. Process. Mag. 18(1), 32–80 (2001)

    CrossRef  Google Scholar 

  103. Caridakis, G., Asteriadis, S., Karpouzis, K., Kollias, S.: Detecting human behavior emotional cues in natural interaction. In: 17th International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE (2011)

    Google Scholar 

  104. Ekman, P., Friesen, W.V.: Facial Action Coding System (1977)

    Google Scholar 

  105. Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affective Comput. 4(1), 15–33 (2013)

    CrossRef  Google Scholar 

  106. Pavlovic, V., Sharma, R., Huang, T.S., et al.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)

    CrossRef  Google Scholar 

  107. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)

    CrossRef  Google Scholar 

  108. Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999)

    MATH  CrossRef  Google Scholar 

  109. Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., Driessen, P.F.: Gesture-based affective computing on motion capture data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 1–7. Springer, Heidelberg (2005). doi:10.1007/11573548_1

    CrossRef  Google Scholar 

  110. O’Brien, J.F.: Bodenheimer Jr., R.E., Brostow, G.J., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data (1999)

    Google Scholar 

  111. Azarbayejani, A., Wren, C., Pentland, A.: Real-time 3-D tracking of the human body. In: IMAGE’COM, Bordeaux, France (1996)

    Google Scholar 

  112. Etcoff, N.L., Magee, J.J.: Categorical perception of facial expressions. Cognition 44(3), 227–240 (1992)

    CrossRef  Google Scholar 

  113. Black, M.J., Yacoob, Y.: Recognizing facial expressions in image sequences using local parameterized models of image motion. Int. J. Comput. Vision 25(1), 23–48 (1997)

    CrossRef  Google Scholar 

  114. Essa, I., Pentland, A.P., et al.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997)

    CrossRef  Google Scholar 

  115. Schiano, D.J., Ehrlich, S.M., Rahardja, K., Sheridan, K.: Face to interface: facial affect in (hu)man and machine. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 193–200. ACM (2000)

    Google Scholar 

  116. Chen, L.S., Huang, T.S., Miyasato, T., Nakatsu, R.: Multimodal human emotion/expression recognition. In: Proceedings, Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 366–371. IEEE (1998)

    Google Scholar 

  117. De Silva, L.C., Miyasato, T., Nakatsu, R.: Facial emotion recognition using multi-modal information. In: Proceedings of 1997 International Conference on Information, Communications and Signal Processing, ICICS 1997, vol. 1, pp. 397–401. IEEE (1997)

    Google Scholar 

  118. Yoshitomi, Y., Kim, S.I., Kawano, T., Kilazoe, T.: Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings, 9th IEEE International Workshop on Robot and Human Interactive Communication, RO-MAN 2000, pp. 178–183. IEEE (2000)

    Google Scholar 

  119. Lee, C.M., Narayanan, S.S.: Toward detecting emotions in spoken dialogs. IEEE Trans. Speech Audio Process. 13(2), 293–303 (2005)

    CrossRef  Google Scholar 

  120. Vyzas, E., Picard, R.W.: Affective pattern classification. In: Proceeding AAAI Fall Symposium Series: Emotional and Intelligent: The Tangled Knot of Cognition, pp. 176–182 (1998)

    Google Scholar 

  121. Wagner, J., Kim, J., André, E.: From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 940–943. IEEE (2005)

    Google Scholar 

  122. Yannakakis, G.N., Martínez, H.P., Jhala, A.: Towards affective camera control in games. User Model. User-Adap. Inter. 20(4), 313–340 (2010)

    CrossRef  Google Scholar 

  123. Martínez, H.P., Yannakakis, G.N.: Genetic search feature selection for affective modeling: a case study on reported preferences. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 15–20. ACM(2010)

    Google Scholar 

  124. Stuhlsatz, A., Meyer, C., Eyben, F., ZieIke, T., Meier, G., Schuller, B.: Deep neural networks for acoustic emotion recognition: raising the benchmarks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5688–5691. IEEE (2011)

    Google Scholar 

  125. Stuhlsatz, A., Lippel, J., Zielke, T.: Discriminative feature extraction with deep neural networks. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  126. Martinez, H.P., Bengio, Y., Yannakakis, G.N.: Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 8(2), 20–33 (2013)

    CrossRef  Google Scholar 

  127. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361(10) (1995)

    Google Scholar 

  128. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks 16(5), 555–559 (2003)

    CrossRef  Google Scholar 

  129. Rifai, S., Bengio, Y., Courville, A., Vincent, P., Mirza, M.: Disentangling factors of variation for facial expression recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 808–822. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_58

    CrossRef  Google Scholar 

  130. Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (cast). Entropy 18(4) (2016)

    Google Scholar 

  131. Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    CrossRef  Google Scholar 

  132. Bachler, M., Mayer, C., Hametner, B., Wassertheurer, S., Holzinger, A.: Online and offline determination of QT and PR interval and QRS duration in electrocardiography. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37015-1_1

    CrossRef  Google Scholar 

  133. Saxena, S., Kumar, V., Hamde, S.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33(13), 1073–1085 (2002)

    MATH  CrossRef  Google Scholar 

  134. Saritha, C., Sukanya, V., Murthy, Y.N.: ECG signal analysis using wavelet transforms. Bulg. J. Phys 35(1), 68–77 (2008)

    MATH  Google Scholar 

  135. Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: ICNN&B 2005, International Conference on Neural Networks and Brain, vol. 2, pp. 1089–1092. IEEE (2005)

    Google Scholar 

  136. Übeyli, E.D.: Ecg beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Proc. 17(3), 675–684 (2007)

    CrossRef  Google Scholar 

  137. Yu, S.N., Chen, Y.H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10), 1142–1150 (2007)

    CrossRef  Google Scholar 

  138. Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K.: Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4), 571 (2005)

    Google Scholar 

  139. Martis, R.J., Chakraborty, C., Ray, A.K.: An integrated ecg feature extraction scheme using pca and wavelet transform. In: 2009 Annual IEEE India Conference (INDICON), pp. 1–4. IEEE (2009)

    Google Scholar 

  140. Yu, S.N., Chou, K.T.: Selection of significant independent components for ECG beat classification. Expert Syst. Appl. 36(2), 2088–2096 (2009)

    CrossRef  Google Scholar 

  141. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-Time Patient-Specific ECG Classification by 1D Convolutional Neural Networks (2015)

    Google Scholar 

  142. Yang, J., Bai, Y., Li, G., Liu, M., Liu, X.: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med. Mater. Eng. 26(s1), 1549–1558 (2015)

    CrossRef  Google Scholar 

  143. Yan, Y., Qin, X., Wu, Y., Zhang, N., Fan, J., Wang, L.: A restricted boltzmann machine based two-lead electrocardiography classification. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–9. IEEE (2015)

    Google Scholar 

  144. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  145. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3, 1–13 (2016)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yike Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Supratak, A., Wu, C., Dong, H., Sun, K., Guo, Y. (2016). Survey on Feature Extraction and Applications of Biosignals. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)