Kaniusas, E.: Biomedical Signals and Sensors I. Biological and Medical Physics, Biomedical Engineering. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M., Rosenkranz, K., Mandic, D.: The in-the-ear recording concept: user-centered and wearable brain monitoring. IEEE Pulse 3(6), 32–42 (2012)
CrossRef
Google Scholar
Yao, H., Marcheselli, C., Afanasiev, A., Lahdesmaki, I., Parviz, B.A.: A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 769–772, February 2012
Google Scholar
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2012)
CrossRef
Google Scholar
Fisher, R.S., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)
CrossRef
Google Scholar
Tao, J., Tan, T.: Affective computing: a review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005). doi:10.1007/11573548_125
CrossRef
Google Scholar
Türker, K.S.: Electromyography: some methodological problems and issues. Phy. Ther. 73(10), 698–710 (1993)
Google Scholar
Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRS) for psychological experiments. Psychophysiology 49, 1017–1034
Google Scholar
Critchley, H.D.: Book review: electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002)
MathSciNet
CrossRef
Google Scholar
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transfom. IEEE Trans. Comput. 1, 90–93 (1974)
MathSciNet
MATH
CrossRef
Google Scholar
Polat, K., Güneş, S.: Classification of epileptiform eeg using a hybrid system based on decision tree classifier and fast fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)
MathSciNet
MATH
Google Scholar
Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)
CrossRef
Google Scholar
Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, JVA 2006, pp. 120–124. IEEE (2006)
Google Scholar
Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)
CrossRef
Google Scholar
Bengio, Y.: Learning Deep Architectures for AI, vol. 2 (2009)
Google Scholar
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks (November 1997), vol. 3361, pp. 255–258 (1995)
Google Scholar
Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
CrossRef
Google Scholar
Hush, D., Horne, B.G.: Progress in Supervised Neural Networks: What’s New Since Lip (1993)
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
CrossRef
Google Scholar
Witte, H., Iasemidis, L., Litt, B.: Special issue on epileptic seizure prediction. IEEE Trans. Biomed. Eng. 50(5), 537–539 (2003)
CrossRef
Google Scholar
Polat, K., Gunes, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)
MathSciNet
MATH
Google Scholar
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inform. Technol. Biomed. 13(5), 703–710 (2009)
CrossRef
Google Scholar
Shoeb, A., Guttag, J.: Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 975–982 (2010)
Google Scholar
Kiymik, M.K., Güler, I., Dizibüyük, A., Akin, M.: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7), 603–616 (2005)
CrossRef
Google Scholar
Logesparan, L., Casson, A.J., Imtiaz, S.A., Rodriguez-Villegas, E.: Discriminating between best performing features for seizure detection and data selection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 1692–1695 (2013)
Google Scholar
Saab, M.E., Gotman, J.: A system to detect the onset of epileptic seizures in scalp EEG. Clin. Neurophysiol. 116(2), 427–442 (2005)
CrossRef
Google Scholar
Kuhlmann, L., Burkitt, A.N., Cook, M.J., Fuller, K., Grayden, D.B., Seiderer, L., Mareels, I.M.Y.: Seizure detection using seizure probability estimation: comparison of features used to detect seizures. Ann. Biomed. Eng. 37(10), 2129–2145 (2009)
CrossRef
Google Scholar
Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)
CrossRef
Google Scholar
Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)
CrossRef
Google Scholar
Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 512–518 (2008)
CrossRef
Google Scholar
Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks 22(10), 1419–1431 (2009)
CrossRef
Google Scholar
Zandi, A.S., Javidan, M., Dumont, G.A., Tafreshi, R.: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Biomed. Eng. 57(7), 1639–1651 (2010)
CrossRef
Google Scholar
Gandhi, T., Panigrahi, B.K., Bhatia, M., Anand, S.: Expert model for detection of epileptic activity in EEG signature. Expert Syst. Appl. 37(4), 3513–3520 (2010)
CrossRef
Google Scholar
Ahammad, N., Fathima, T., Joseph, P.: Detection of epileptic seizure event and onset using EEG. BioMed Research International 2014, p. 7 (2014)
Google Scholar
Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N.E., Fernández, S.I., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., Loddenkemper, T.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)
CrossRef
Google Scholar
Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G.: Epileptic seizures may begin clinical study hours in advance of clinical onset: a report of five patients. Neuron 30(1), 1–14 (2001)
CrossRef
Google Scholar
Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D’Havé, M., Adam, C., Renault, B., Varela, F., Baulac, M.: Anticipation of epileptic seizures from standard EEG recordings. Lancet 357(9251), 183–188 (2001)
CrossRef
Google Scholar
Le Van Quyen, M., Navarro, V., Martinerie, J., Baulac, M., Varela, F.J.: Toward a neurodynamical understanding of ictogenesis. Epilepsia 44(Suppl 1), 30–43 (2003)
CrossRef
Google Scholar
Litt, B., Lehnertz, K.: Seizure prediction and the preseizure period. Current Opinion Neurol. 15(2), 173–177 (2002)
CrossRef
Google Scholar
Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126(2), 237–248 (2015)
CrossRef
Google Scholar
Sackellares, J.C., Shiau, D.S., Principe, J.C., Yang, M.C.K., Dance, L.K., Suharitdamrong, W., Chaovalitwongse, W.A., Pardalos, P.M., Iasemidis, L.D.: Predictability analysis for an automated seizure prediction algorithm. J. Clin. Neurophysiol. 23(6), 509–520 (2006). Official publication of the American Electroencephalographic Society
CrossRef
Google Scholar
Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10), 1761–1770 (2011)
CrossRef
Google Scholar
Gadhoumi, K., Lina, J.M., Gotman, J.: Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124(9), 1745–1754 (2013)
CrossRef
Google Scholar
Li, S., Zhou, W., Yuan, Q., Liu, Y.: Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 880–886 (2013)
CrossRef
Google Scholar
Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T.G., Toumazou, C.: Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PLoS ONE 9(6), e96235 (2014)
CrossRef
Google Scholar
Zheng, Y., Wang, G., Li, K., Bao, G., Wang, J.: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125(6), 1104–1111 (2014). Official journal of the International Federation of Clinical Neurophysiology
CrossRef
Google Scholar
Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin. Neurophysiol. 116(3), 493–505 (2005)
CrossRef
Google Scholar
Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116(3), 569–587 (2005)
CrossRef
Google Scholar
Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007)
CrossRef
Google Scholar
Oppenheimer, S.M., Gelb, A., Girvin, J.P., Hachinski, V.C.: Cardiovascular effects of human insular cortex stimulation. Neurology 42(9), 1727–1732 (1992)
CrossRef
Google Scholar
Leutmezer, F., Schernthaner, C., Lurger, S., Potzelberger, K., Baumgartner, C.: Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 44(3), 348–354 (2003)
CrossRef
Google Scholar
Opherk, C., Coromilas, J., Hirsch, L.J.: Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res. 52(2), 117–127 (2002)
CrossRef
Google Scholar
Di Gennaro, G., Quarato, P.P., Sebastiano, F., Esposito, V., Onorati, P., Grammaldo, L.G., Meldolesi, G.N., Mascia, A., Falco, C., Scoppetta, C., Eusebi, F., Manfredi, M., Cantore, G.: Ictal heart rate increase precedes EEG discharge in drug-resistant mesial temporal lobe seizures. Clin. Neurophysiol. 115(5), 1169–1177 (2004)
CrossRef
Google Scholar
Weil, S., Arnold, S., Eisensehr, I., Noachtar, S.: Heart rate increase in otherwise subclinical seizures is different in temporal versus extratemporal seizure onset: Support for temporal lobe autonomic influence. Epileptic Disorders 7(3), 199–204 (2005)
Google Scholar
Clancy, R.R., Legido, A., Lewis, D.: Occult neonatal seizures. Epilepsia 29(3), 256–261 (1988)
CrossRef
Google Scholar
Murray, D.M., Boylan, G.B., Ali, I., Ryan, C.A., Murphy, B.P., Connolly, S.: Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch. Disease Childhood 93(3), F187–F191 (2008). Fetal And Neonatal Edition
CrossRef
Google Scholar
Teixeira, C.A., Direito, B., Feldwisch-Drentrup, H., Valderrama, M., Costa, R.P., Alvarado-Rojas, C., Nikolopoulos, S., Le Van Quyen, M., Timmer, J., Schelter, B., Dourado, A.: EPILAB: a software package for studies on the prediction of epileptic seizures. J. Neurosci. Methods 200(2), 257–271 (2011)
CrossRef
Google Scholar
Valderrama, M., Alvarado, C., Nikolopoulos, S., Martinerie, J., Adam, C., Navarro, V., Le Van Quyen, M.: Identifying an increased risk of epileptic seizures using a multi-feature EEG-ECG classification. Biomed. Signal Process. Control 7(3), 237–244 (2012)
CrossRef
Google Scholar
Phomsiricharoenphant, W., Ongwattanakul, S., Wongsawat, Y.: The preliminary study of EEG and ECG for epileptic seizure prediction based on Hilbert Huang Transform. In: BMEiCON 2014–7th Biomedical Engineering International Conference, pp. 1–4. IEEE (2015)
Google Scholar
Piper, D., Schiecke, K., Leistritz, L., Pester, B., Benninger, F., Feucht, M., Ungureanu, M., Strungaru, R., Witte, H.: Synchronization analysis between heart rate variability and EEG activity before, during, and after epileptic seizure. Biomed. Eng./Biomedizinische Technik 59(4), 343–355 (2014)
Google Scholar
Greene, B.R., Boylan, G.B., Reilly, R.B., de Chazal, P., Connolly, S.: Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin. Neurophysiol. 118(6), 1348–1359 (2007)
CrossRef
Google Scholar
Güler, N.F., Übeyli, E.D., Güler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)
CrossRef
Google Scholar
Supratak, A., Li, L., Guo, Y.: Feature extraction with stacked autoencoders for epileptic seizure detection. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4184–4187 (2014)
Google Scholar
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inform. Process. Syst. 19(1), 153 (2007)
Google Scholar
Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1–4), 201–218 (2000)
CrossRef
Google Scholar
Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)
CrossRef
Google Scholar
Ohayon, M.M.: Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6(2), 97–111 (2002)
CrossRef
Google Scholar
Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, public health service, U.S. government printing office, Washington, DC (1968)
Google Scholar
Schulz, H.: The AASM manual for the scoring of sleep and associated events (2007)
Google Scholar
Yetton, B.D., Niknazar, M., Duggan, K.A., McDevitt, E.A., Whitehurst, L.N., Sattari, N., Mednick, S.C.: Automatic detection of Rapid Eye Movements (REMs): a machine learning approach. J. Neurosci. Methods 259, 72–82 (2015)
CrossRef
Google Scholar
Cona, F., Pizza, F., Provini, F., Magosso, E.: An improved algorithm for the automatic detection and characterization of slow eye movements. Med. Eng. Phy. 36(7), 954–961 (2014)
CrossRef
Google Scholar
Marshall, H., Robertson, B., Marshall, B., Carno, M.A.: Polysomnography for the Sleep Technologist: Instrumentation, Monitoring, and Related Procedures. Elsevier Health Sciences (2013)
Google Scholar
Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108(1), 10–19 (2012)
CrossRef
Google Scholar
Tsinalis, O., Matthews, P.M., Guo, Y.: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. (2015)
Google Scholar
Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.E., Eichenlaub, J.B., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods, pp. 1–12 (2014)
Google Scholar
Liang, S.F., Kuo, C.E., Hu, Y.H., Pan, Y.H., Wang, Y.H.: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans. Instrum. Meas. 61(6), 1649–1657 (2012)
CrossRef
Google Scholar
Adnane, M., Jiang, Z., Yan, Z.: Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst. Appl. 39(1), 1401–1413 (2012)
CrossRef
Google Scholar
Xiao, M., Yan, H., Song, J., Yang, Y., Yang, X.: Sleep stages classification based on heart rate variability and random forest. Biomed. Signal Process. Control 8(6), 624–633 (2013)
CrossRef
Google Scholar
Penzel, T., Kantelhardt, J.W., Lo, C.C., Voigt, K., Vogelmeier, C.: Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 28(Suppl 1), S48–S53 (2003). Official publication of the American College of Neuropsychopharmacology
CrossRef
Google Scholar
Togo, F., Yamamoto, Y.: Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circulatory Physiol. 280, H17–H21 (2001)
Google Scholar
Längkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst. 2012, 1–9 (2012)
CrossRef
Google Scholar
Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and non-contact biopotential. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)
CrossRef
Google Scholar
Berthomier, C., Drouot, X., Herman-Stoïca, M., Berthomier, P., Prado, J., Bokar-Thire, D., Benoit, O., Mattout, J., D’Ortho, M.P.: Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep 30(11), 1587–1595 (2007)
Google Scholar
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. Aistats 15, 315–323 (2011)
Google Scholar
Picard, R.W., Picard, R.: Affective Computing. MIT press, Cambridge (1997)
CrossRef
Google Scholar
Picard, R.W.: Affective computing: challenges. Int. J. Hum Comput Stud. 59(1), 55–64 (2003)
CrossRef
Google Scholar
Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., Holzinger, A.: Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5614, pp. 615–624. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02707-9_70
CrossRef
Google Scholar
Gomez, P., Danuser, B.: Affective and physiological responses to environmental noises and music. Int. J. Psychophysiol. 53(2), 91–103 (2004)
CrossRef
Google Scholar
Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261 (1993)
CrossRef
Google Scholar
Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)
CrossRef
Google Scholar
Ververidis, D., Kotropoulos, C.: Automatic speech classification to five emotional states based on gender information. In: 12th European Signal Processing Conference, pp. 341–344. IEEE (2004)
Google Scholar
Giakoumis, D., Tzovaras, D., Moustakas, K., Hassapis, G.: Automatic recognition of boredom in video games using novel biosignal moment-based features. IEEE Trans. Affective Comput. 2(3), 119–133 (2011)
CrossRef
Google Scholar
Yannakakis, G.N., Hallam, J.: Entertainment modeling through physiology in physical play. Int. J. Hum Comput Stud. 66(10), 741–755 (2008)
CrossRef
Google Scholar
Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A.: On applying approximate entropy to ECG signals for knowledge discovery on the example of big sensor data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 646–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35236-2_64
CrossRef
Google Scholar
Sang-TaeLee, B., ChungyongLee, D.H.: Speaker dependent emotion recognition using speech signals. In: The Proceedings of the 6th International Conference on Spoken Language Processing (2000)
Google Scholar
Scherer, K.R.: Vocal affect expression: a review and a model for future research. Psychol. Bull. 99(2), 143 (1986)
MathSciNet
CrossRef
Google Scholar
Petrushin, V.A.: Emotion recognition in speech signal: experimental study, development, and application. Studies 3, 4 (2000)
Google Scholar
Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 342–346. ACM (1999)
Google Scholar
Zimmermann, P., Guttormsen, S., Danuser, B., Gomez, P.: Affective computinga rationale for measuring mood with mouse and keyboard. Int. J. Occup. Safety Ergonomics 9(4), 539–551 (2003)
CrossRef
Google Scholar
Mueller, F., Lockerd, A.: Cheese: tracking mouse movement activity on websites, a tool for user modeling. In: CHI 2001 Extended Abstracts on Human Factors in Computing Systems, pp. 279–280. ACM (2001)
Google Scholar
Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14(2), 93–118 (2002)
CrossRef
Google Scholar
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Sig. Process. Mag. 18(1), 32–80 (2001)
CrossRef
Google Scholar
Caridakis, G., Asteriadis, S., Karpouzis, K., Kollias, S.: Detecting human behavior emotional cues in natural interaction. In: 17th International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE (2011)
Google Scholar
Ekman, P., Friesen, W.V.: Facial Action Coding System (1977)
Google Scholar
Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affective Comput. 4(1), 15–33 (2013)
CrossRef
Google Scholar
Pavlovic, V., Sharma, R., Huang, T.S., et al.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)
CrossRef
Google Scholar
Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)
CrossRef
Google Scholar
Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999)
MATH
CrossRef
Google Scholar
Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., Driessen, P.F.: Gesture-based affective computing on motion capture data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 1–7. Springer, Heidelberg (2005). doi:10.1007/11573548_1
CrossRef
Google Scholar
O’Brien, J.F.: Bodenheimer Jr., R.E., Brostow, G.J., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data (1999)
Google Scholar
Azarbayejani, A., Wren, C., Pentland, A.: Real-time 3-D tracking of the human body. In: IMAGE’COM, Bordeaux, France (1996)
Google Scholar
Etcoff, N.L., Magee, J.J.: Categorical perception of facial expressions. Cognition 44(3), 227–240 (1992)
CrossRef
Google Scholar
Black, M.J., Yacoob, Y.: Recognizing facial expressions in image sequences using local parameterized models of image motion. Int. J. Comput. Vision 25(1), 23–48 (1997)
CrossRef
Google Scholar
Essa, I., Pentland, A.P., et al.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997)
CrossRef
Google Scholar
Schiano, D.J., Ehrlich, S.M., Rahardja, K., Sheridan, K.: Face to interface: facial affect in (hu)man and machine. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 193–200. ACM (2000)
Google Scholar
Chen, L.S., Huang, T.S., Miyasato, T., Nakatsu, R.: Multimodal human emotion/expression recognition. In: Proceedings, Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 366–371. IEEE (1998)
Google Scholar
De Silva, L.C., Miyasato, T., Nakatsu, R.: Facial emotion recognition using multi-modal information. In: Proceedings of 1997 International Conference on Information, Communications and Signal Processing, ICICS 1997, vol. 1, pp. 397–401. IEEE (1997)
Google Scholar
Yoshitomi, Y., Kim, S.I., Kawano, T., Kilazoe, T.: Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings, 9th IEEE International Workshop on Robot and Human Interactive Communication, RO-MAN 2000, pp. 178–183. IEEE (2000)
Google Scholar
Lee, C.M., Narayanan, S.S.: Toward detecting emotions in spoken dialogs. IEEE Trans. Speech Audio Process. 13(2), 293–303 (2005)
CrossRef
Google Scholar
Vyzas, E., Picard, R.W.: Affective pattern classification. In: Proceeding AAAI Fall Symposium Series: Emotional and Intelligent: The Tangled Knot of Cognition, pp. 176–182 (1998)
Google Scholar
Wagner, J., Kim, J., André, E.: From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 940–943. IEEE (2005)
Google Scholar
Yannakakis, G.N., Martínez, H.P., Jhala, A.: Towards affective camera control in games. User Model. User-Adap. Inter. 20(4), 313–340 (2010)
CrossRef
Google Scholar
Martínez, H.P., Yannakakis, G.N.: Genetic search feature selection for affective modeling: a case study on reported preferences. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 15–20. ACM(2010)
Google Scholar
Stuhlsatz, A., Meyer, C., Eyben, F., ZieIke, T., Meier, G., Schuller, B.: Deep neural networks for acoustic emotion recognition: raising the benchmarks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5688–5691. IEEE (2011)
Google Scholar
Stuhlsatz, A., Lippel, J., Zielke, T.: Discriminative feature extraction with deep neural networks. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)
Google Scholar
Martinez, H.P., Bengio, Y., Yannakakis, G.N.: Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 8(2), 20–33 (2013)
CrossRef
Google Scholar
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361(10) (1995)
Google Scholar
Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks 16(5), 555–559 (2003)
CrossRef
Google Scholar
Rifai, S., Bengio, Y., Courville, A., Vincent, P., Mirza, M.: Disentangling factors of variation for facial expression recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 808–822. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_58
CrossRef
Google Scholar
Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (cast). Entropy 18(4) (2016)
Google Scholar
Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)
CrossRef
Google Scholar
Bachler, M., Mayer, C., Hametner, B., Wassertheurer, S., Holzinger, A.: Online and offline determination of QT and PR interval and QRS duration in electrocardiography. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37015-1_1
CrossRef
Google Scholar
Saxena, S., Kumar, V., Hamde, S.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33(13), 1073–1085 (2002)
MATH
CrossRef
Google Scholar
Saritha, C., Sukanya, V., Murthy, Y.N.: ECG signal analysis using wavelet transforms. Bulg. J. Phys 35(1), 68–77 (2008)
MATH
Google Scholar
Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: ICNN&B 2005, International Conference on Neural Networks and Brain, vol. 2, pp. 1089–1092. IEEE (2005)
Google Scholar
Übeyli, E.D.: Ecg beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Proc. 17(3), 675–684 (2007)
CrossRef
Google Scholar
Yu, S.N., Chen, Y.H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10), 1142–1150 (2007)
CrossRef
Google Scholar
Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K.: Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4), 571 (2005)
Google Scholar
Martis, R.J., Chakraborty, C., Ray, A.K.: An integrated ecg feature extraction scheme using pca and wavelet transform. In: 2009 Annual IEEE India Conference (INDICON), pp. 1–4. IEEE (2009)
Google Scholar
Yu, S.N., Chou, K.T.: Selection of significant independent components for ECG beat classification. Expert Syst. Appl. 36(2), 2088–2096 (2009)
CrossRef
Google Scholar
Kiranyaz, S., Ince, T., Gabbouj, M.: Real-Time Patient-Specific ECG Classification by 1D Convolutional Neural Networks (2015)
Google Scholar
Yang, J., Bai, Y., Li, G., Liu, M., Liu, X.: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med. Mater. Eng. 26(s1), 1549–1558 (2015)
CrossRef
Google Scholar
Yan, Y., Qin, X., Wu, Y., Zhang, N., Fan, J., Wang, L.: A restricted boltzmann machine based two-lead electrocardiography classification. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–9. IEEE (2015)
Google Scholar
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53
Google Scholar
Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3, 1–13 (2016)
CrossRef
Google Scholar