Survey on Feature Extraction and Applications of Biosignals

  • Akara Supratak
  • Chao Wu
  • Hao Dong
  • Kai Sun
  • Yike GuoEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9605)


Biosignals have become an important indicator not only for medical diagnosis and subsequent therapy, but also passive health monitoring. Extracting meaningful features from biosignals can help people understand the human functional state, so that upcoming harmful symptoms or diseases can be alleviated or avoided. There are two main approaches commonly used to derive useful features from biosignals, which are hand-engineering and deep learning. The majority of the research in this field focuses on hand-engineering features, which require domain-specific experts to design algorithms to extract meaningful features. In the last years, several studies have employed deep learning to automatically learn features from raw biosignals to make feature extraction algorithms less dependent on humans. These studies have also demonstrated promising results in a variety of biosignal applications. In this survey, we review different types of biosignals and the main approaches to extract features from the signal in the context of biomedical applications. We also discuss challenges and limitations of the existing approaches, and possible future research.


Feature extraction Deep learning Biosignals Analytical systems 


  1. 1.
    Kaniusas, E.: Biomedical Signals and Sensors I. Biological and Medical Physics, Biomedical Engineering. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M., Rosenkranz, K., Mandic, D.: The in-the-ear recording concept: user-centered and wearable brain monitoring. IEEE Pulse 3(6), 32–42 (2012)CrossRefGoogle Scholar
  3. 3.
    Yao, H., Marcheselli, C., Afanasiev, A., Lahdesmaki, I., Parviz, B.A.: A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 769–772, February 2012Google Scholar
  4. 4.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2012)CrossRefGoogle Scholar
  5. 5.
    Fisher, R.S., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)CrossRefGoogle Scholar
  6. 6.
    Tao, J., Tan, T.: Affective computing: a review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005). doi: 10.1007/11573548_125 CrossRefGoogle Scholar
  7. 7.
    Türker, K.S.: Electromyography: some methodological problems and issues. Phy. Ther. 73(10), 698–710 (1993)Google Scholar
  8. 8.
    Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRS) for psychological experiments. Psychophysiology 49, 1017–1034Google Scholar
  9. 9.
    Critchley, H.D.: Book review: electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transfom. IEEE Trans. Comput. 1, 90–93 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Polat, K., Güneş, S.: Classification of epileptiform eeg using a hybrid system based on decision tree classifier and fast fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)CrossRefGoogle Scholar
  13. 13.
    Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, JVA 2006, pp. 120–124. IEEE (2006)Google Scholar
  14. 14.
    Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)CrossRefGoogle Scholar
  15. 15.
    Bengio, Y.: Learning Deep Architectures for AI, vol. 2 (2009)Google Scholar
  16. 16.
    LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks (November 1997), vol. 3361, pp. 255–258 (1995)Google Scholar
  17. 17.
    Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)CrossRefGoogle Scholar
  18. 18.
    Hush, D., Horne, B.G.: Progress in Supervised Neural Networks: What’s New Since Lip (1993)Google Scholar
  19. 19.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  20. 20.
    Witte, H., Iasemidis, L., Litt, B.: Special issue on epileptic seizure prediction. IEEE Trans. Biomed. Eng. 50(5), 537–539 (2003)CrossRefGoogle Scholar
  21. 21.
    Polat, K., Gunes, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inform. Technol. Biomed. 13(5), 703–710 (2009)CrossRefGoogle Scholar
  23. 23.
    Shoeb, A., Guttag, J.: Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 975–982 (2010)Google Scholar
  24. 24.
    Kiymik, M.K., Güler, I., Dizibüyük, A., Akin, M.: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7), 603–616 (2005)CrossRefGoogle Scholar
  25. 25.
    Logesparan, L., Casson, A.J., Imtiaz, S.A., Rodriguez-Villegas, E.: Discriminating between best performing features for seizure detection and data selection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 1692–1695 (2013)Google Scholar
  26. 26.
    Saab, M.E., Gotman, J.: A system to detect the onset of epileptic seizures in scalp EEG. Clin. Neurophysiol. 116(2), 427–442 (2005)CrossRefGoogle Scholar
  27. 27.
    Kuhlmann, L., Burkitt, A.N., Cook, M.J., Fuller, K., Grayden, D.B., Seiderer, L., Mareels, I.M.Y.: Seizure detection using seizure probability estimation: comparison of features used to detect seizures. Ann. Biomed. Eng. 37(10), 2129–2145 (2009)CrossRefGoogle Scholar
  28. 28.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)CrossRefGoogle Scholar
  29. 29.
    Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)CrossRefGoogle Scholar
  30. 30.
    Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 512–518 (2008)CrossRefGoogle Scholar
  31. 31.
    Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks 22(10), 1419–1431 (2009)CrossRefGoogle Scholar
  32. 32.
    Zandi, A.S., Javidan, M., Dumont, G.A., Tafreshi, R.: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Biomed. Eng. 57(7), 1639–1651 (2010)CrossRefGoogle Scholar
  33. 33.
    Gandhi, T., Panigrahi, B.K., Bhatia, M., Anand, S.: Expert model for detection of epileptic activity in EEG signature. Expert Syst. Appl. 37(4), 3513–3520 (2010)CrossRefGoogle Scholar
  34. 34.
    Ahammad, N., Fathima, T., Joseph, P.: Detection of epileptic seizure event and onset using EEG. BioMed Research International 2014, p. 7 (2014)Google Scholar
  35. 35.
    Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N.E., Fernández, S.I., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., Loddenkemper, T.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)CrossRefGoogle Scholar
  36. 36.
    Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G.: Epileptic seizures may begin clinical study hours in advance of clinical onset: a report of five patients. Neuron 30(1), 1–14 (2001)CrossRefGoogle Scholar
  37. 37.
    Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D’Havé, M., Adam, C., Renault, B., Varela, F., Baulac, M.: Anticipation of epileptic seizures from standard EEG recordings. Lancet 357(9251), 183–188 (2001)CrossRefGoogle Scholar
  38. 38.
    Le Van Quyen, M., Navarro, V., Martinerie, J., Baulac, M., Varela, F.J.: Toward a neurodynamical understanding of ictogenesis. Epilepsia 44(Suppl 1), 30–43 (2003)CrossRefGoogle Scholar
  39. 39.
    Litt, B., Lehnertz, K.: Seizure prediction and the preseizure period. Current Opinion Neurol. 15(2), 173–177 (2002)CrossRefGoogle Scholar
  40. 40.
    Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126(2), 237–248 (2015)CrossRefGoogle Scholar
  41. 41.
    Sackellares, J.C., Shiau, D.S., Principe, J.C., Yang, M.C.K., Dance, L.K., Suharitdamrong, W., Chaovalitwongse, W.A., Pardalos, P.M., Iasemidis, L.D.: Predictability analysis for an automated seizure prediction algorithm. J. Clin. Neurophysiol. 23(6), 509–520 (2006). Official publication of the American Electroencephalographic SocietyCrossRefGoogle Scholar
  42. 42.
    Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10), 1761–1770 (2011)CrossRefGoogle Scholar
  43. 43.
    Gadhoumi, K., Lina, J.M., Gotman, J.: Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124(9), 1745–1754 (2013)CrossRefGoogle Scholar
  44. 44.
    Li, S., Zhou, W., Yuan, Q., Liu, Y.: Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 880–886 (2013)CrossRefGoogle Scholar
  45. 45.
    Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T.G., Toumazou, C.: Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PLoS ONE 9(6), e96235 (2014)CrossRefGoogle Scholar
  46. 46.
    Zheng, Y., Wang, G., Li, K., Bao, G., Wang, J.: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125(6), 1104–1111 (2014). Official journal of the International Federation of Clinical NeurophysiologyCrossRefGoogle Scholar
  47. 47.
    Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin. Neurophysiol. 116(3), 493–505 (2005)CrossRefGoogle Scholar
  48. 48.
    Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116(3), 569–587 (2005)CrossRefGoogle Scholar
  49. 49.
    Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007)CrossRefGoogle Scholar
  50. 50.
    Oppenheimer, S.M., Gelb, A., Girvin, J.P., Hachinski, V.C.: Cardiovascular effects of human insular cortex stimulation. Neurology 42(9), 1727–1732 (1992)CrossRefGoogle Scholar
  51. 51.
    Leutmezer, F., Schernthaner, C., Lurger, S., Potzelberger, K., Baumgartner, C.: Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 44(3), 348–354 (2003)CrossRefGoogle Scholar
  52. 52.
    Opherk, C., Coromilas, J., Hirsch, L.J.: Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res. 52(2), 117–127 (2002)CrossRefGoogle Scholar
  53. 53.
    Di Gennaro, G., Quarato, P.P., Sebastiano, F., Esposito, V., Onorati, P., Grammaldo, L.G., Meldolesi, G.N., Mascia, A., Falco, C., Scoppetta, C., Eusebi, F., Manfredi, M., Cantore, G.: Ictal heart rate increase precedes EEG discharge in drug-resistant mesial temporal lobe seizures. Clin. Neurophysiol. 115(5), 1169–1177 (2004)CrossRefGoogle Scholar
  54. 54.
    Weil, S., Arnold, S., Eisensehr, I., Noachtar, S.: Heart rate increase in otherwise subclinical seizures is different in temporal versus extratemporal seizure onset: Support for temporal lobe autonomic influence. Epileptic Disorders 7(3), 199–204 (2005)Google Scholar
  55. 55.
    Clancy, R.R., Legido, A., Lewis, D.: Occult neonatal seizures. Epilepsia 29(3), 256–261 (1988)CrossRefGoogle Scholar
  56. 56.
    Murray, D.M., Boylan, G.B., Ali, I., Ryan, C.A., Murphy, B.P., Connolly, S.: Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch. Disease Childhood 93(3), F187–F191 (2008). Fetal And Neonatal EditionCrossRefGoogle Scholar
  57. 57.
    Teixeira, C.A., Direito, B., Feldwisch-Drentrup, H., Valderrama, M., Costa, R.P., Alvarado-Rojas, C., Nikolopoulos, S., Le Van Quyen, M., Timmer, J., Schelter, B., Dourado, A.: EPILAB: a software package for studies on the prediction of epileptic seizures. J. Neurosci. Methods 200(2), 257–271 (2011)CrossRefGoogle Scholar
  58. 58.
    Valderrama, M., Alvarado, C., Nikolopoulos, S., Martinerie, J., Adam, C., Navarro, V., Le Van Quyen, M.: Identifying an increased risk of epileptic seizures using a multi-feature EEG-ECG classification. Biomed. Signal Process. Control 7(3), 237–244 (2012)CrossRefGoogle Scholar
  59. 59.
    Phomsiricharoenphant, W., Ongwattanakul, S., Wongsawat, Y.: The preliminary study of EEG and ECG for epileptic seizure prediction based on Hilbert Huang Transform. In: BMEiCON 2014–7th Biomedical Engineering International Conference, pp. 1–4. IEEE (2015)Google Scholar
  60. 60.
    Piper, D., Schiecke, K., Leistritz, L., Pester, B., Benninger, F., Feucht, M., Ungureanu, M., Strungaru, R., Witte, H.: Synchronization analysis between heart rate variability and EEG activity before, during, and after epileptic seizure. Biomed. Eng./Biomedizinische Technik 59(4), 343–355 (2014)Google Scholar
  61. 61.
    Greene, B.R., Boylan, G.B., Reilly, R.B., de Chazal, P., Connolly, S.: Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin. Neurophysiol. 118(6), 1348–1359 (2007)CrossRefGoogle Scholar
  62. 62.
    Güler, N.F., Übeyli, E.D., Güler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)CrossRefGoogle Scholar
  63. 63.
    Supratak, A., Li, L., Guo, Y.: Feature extraction with stacked autoencoders for epileptic seizure detection. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4184–4187 (2014)Google Scholar
  64. 64.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inform. Process. Syst. 19(1), 153 (2007)Google Scholar
  65. 65.
    Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1–4), 201–218 (2000)CrossRefGoogle Scholar
  66. 66.
    Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)CrossRefGoogle Scholar
  67. 67.
    Ohayon, M.M.: Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6(2), 97–111 (2002)CrossRefGoogle Scholar
  68. 68.
    Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, public health service, U.S. government printing office, Washington, DC (1968)Google Scholar
  69. 69.
    Schulz, H.: The AASM manual for the scoring of sleep and associated events (2007)Google Scholar
  70. 70.
    Yetton, B.D., Niknazar, M., Duggan, K.A., McDevitt, E.A., Whitehurst, L.N., Sattari, N., Mednick, S.C.: Automatic detection of Rapid Eye Movements (REMs): a machine learning approach. J. Neurosci. Methods 259, 72–82 (2015)CrossRefGoogle Scholar
  71. 71.
    Cona, F., Pizza, F., Provini, F., Magosso, E.: An improved algorithm for the automatic detection and characterization of slow eye movements. Med. Eng. Phy. 36(7), 954–961 (2014)CrossRefGoogle Scholar
  72. 72.
    Marshall, H., Robertson, B., Marshall, B., Carno, M.A.: Polysomnography for the Sleep Technologist: Instrumentation, Monitoring, and Related Procedures. Elsevier Health Sciences (2013)Google Scholar
  73. 73.
    Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108(1), 10–19 (2012)CrossRefGoogle Scholar
  74. 74.
    Tsinalis, O., Matthews, P.M., Guo, Y.: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. (2015)Google Scholar
  75. 75.
    Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.E., Eichenlaub, J.B., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods, pp. 1–12 (2014)Google Scholar
  76. 76.
    Liang, S.F., Kuo, C.E., Hu, Y.H., Pan, Y.H., Wang, Y.H.: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans. Instrum. Meas. 61(6), 1649–1657 (2012)CrossRefGoogle Scholar
  77. 77.
    Adnane, M., Jiang, Z., Yan, Z.: Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst. Appl. 39(1), 1401–1413 (2012)CrossRefGoogle Scholar
  78. 78.
    Xiao, M., Yan, H., Song, J., Yang, Y., Yang, X.: Sleep stages classification based on heart rate variability and random forest. Biomed. Signal Process. Control 8(6), 624–633 (2013)CrossRefGoogle Scholar
  79. 79.
    Penzel, T., Kantelhardt, J.W., Lo, C.C., Voigt, K., Vogelmeier, C.: Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 28(Suppl 1), S48–S53 (2003). Official publication of the American College of NeuropsychopharmacologyCrossRefGoogle Scholar
  80. 80.
    Togo, F., Yamamoto, Y.: Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circulatory Physiol. 280, H17–H21 (2001)Google Scholar
  81. 81.
    Längkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst. 2012, 1–9 (2012)CrossRefGoogle Scholar
  82. 82.
    Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and non-contact biopotential. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)CrossRefGoogle Scholar
  83. 83.
    Berthomier, C., Drouot, X., Herman-Stoïca, M., Berthomier, P., Prado, J., Bokar-Thire, D., Benoit, O., Mattout, J., D’Ortho, M.P.: Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep 30(11), 1587–1595 (2007)Google Scholar
  84. 84.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. Aistats 15, 315–323 (2011)Google Scholar
  85. 85.
    Picard, R.W., Picard, R.: Affective Computing. MIT press, Cambridge (1997)CrossRefGoogle Scholar
  86. 86.
    Picard, R.W.: Affective computing: challenges. Int. J. Hum Comput Stud. 59(1), 55–64 (2003)CrossRefGoogle Scholar
  87. 87.
    Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., Holzinger, A.: Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5614, pp. 615–624. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02707-9_70 CrossRefGoogle Scholar
  88. 88.
    Gomez, P., Danuser, B.: Affective and physiological responses to environmental noises and music. Int. J. Psychophysiol. 53(2), 91–103 (2004)CrossRefGoogle Scholar
  89. 89.
    Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261 (1993)CrossRefGoogle Scholar
  90. 90.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  91. 91.
    Ververidis, D., Kotropoulos, C.: Automatic speech classification to five emotional states based on gender information. In: 12th European Signal Processing Conference, pp. 341–344. IEEE (2004)Google Scholar
  92. 92.
    Giakoumis, D., Tzovaras, D., Moustakas, K., Hassapis, G.: Automatic recognition of boredom in video games using novel biosignal moment-based features. IEEE Trans. Affective Comput. 2(3), 119–133 (2011)CrossRefGoogle Scholar
  93. 93.
    Yannakakis, G.N., Hallam, J.: Entertainment modeling through physiology in physical play. Int. J. Hum Comput Stud. 66(10), 741–755 (2008)CrossRefGoogle Scholar
  94. 94.
    Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A.: On applying approximate entropy to ECG signals for knowledge discovery on the example of big sensor data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 646–657. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35236-2_64 CrossRefGoogle Scholar
  95. 95.
    Sang-TaeLee, B., ChungyongLee, D.H.: Speaker dependent emotion recognition using speech signals. In: The Proceedings of the 6th International Conference on Spoken Language Processing (2000)Google Scholar
  96. 96.
    Scherer, K.R.: Vocal affect expression: a review and a model for future research. Psychol. Bull. 99(2), 143 (1986)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Petrushin, V.A.: Emotion recognition in speech signal: experimental study, development, and application. Studies 3, 4 (2000)Google Scholar
  98. 98.
    Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 342–346. ACM (1999)Google Scholar
  99. 99.
    Zimmermann, P., Guttormsen, S., Danuser, B., Gomez, P.: Affective computinga rationale for measuring mood with mouse and keyboard. Int. J. Occup. Safety Ergonomics 9(4), 539–551 (2003)CrossRefGoogle Scholar
  100. 100.
    Mueller, F., Lockerd, A.: Cheese: tracking mouse movement activity on websites, a tool for user modeling. In: CHI 2001 Extended Abstracts on Human Factors in Computing Systems, pp. 279–280. ACM (2001)Google Scholar
  101. 101.
    Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14(2), 93–118 (2002)CrossRefGoogle Scholar
  102. 102.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Sig. Process. Mag. 18(1), 32–80 (2001)CrossRefGoogle Scholar
  103. 103.
    Caridakis, G., Asteriadis, S., Karpouzis, K., Kollias, S.: Detecting human behavior emotional cues in natural interaction. In: 17th International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE (2011)Google Scholar
  104. 104.
    Ekman, P., Friesen, W.V.: Facial Action Coding System (1977)Google Scholar
  105. 105.
    Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affective Comput. 4(1), 15–33 (2013)CrossRefGoogle Scholar
  106. 106.
    Pavlovic, V., Sharma, R., Huang, T.S., et al.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)CrossRefGoogle Scholar
  107. 107.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)CrossRefGoogle Scholar
  108. 108.
    Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999)zbMATHCrossRefGoogle Scholar
  109. 109.
    Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., Driessen, P.F.: Gesture-based affective computing on motion capture data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 1–7. Springer, Heidelberg (2005). doi: 10.1007/11573548_1 CrossRefGoogle Scholar
  110. 110.
    O’Brien, J.F.: Bodenheimer Jr., R.E., Brostow, G.J., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data (1999)Google Scholar
  111. 111.
    Azarbayejani, A., Wren, C., Pentland, A.: Real-time 3-D tracking of the human body. In: IMAGE’COM, Bordeaux, France (1996)Google Scholar
  112. 112.
    Etcoff, N.L., Magee, J.J.: Categorical perception of facial expressions. Cognition 44(3), 227–240 (1992)CrossRefGoogle Scholar
  113. 113.
    Black, M.J., Yacoob, Y.: Recognizing facial expressions in image sequences using local parameterized models of image motion. Int. J. Comput. Vision 25(1), 23–48 (1997)CrossRefGoogle Scholar
  114. 114.
    Essa, I., Pentland, A.P., et al.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997)CrossRefGoogle Scholar
  115. 115.
    Schiano, D.J., Ehrlich, S.M., Rahardja, K., Sheridan, K.: Face to interface: facial affect in (hu)man and machine. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 193–200. ACM (2000)Google Scholar
  116. 116.
    Chen, L.S., Huang, T.S., Miyasato, T., Nakatsu, R.: Multimodal human emotion/expression recognition. In: Proceedings, Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 366–371. IEEE (1998)Google Scholar
  117. 117.
    De Silva, L.C., Miyasato, T., Nakatsu, R.: Facial emotion recognition using multi-modal information. In: Proceedings of 1997 International Conference on Information, Communications and Signal Processing, ICICS 1997, vol. 1, pp. 397–401. IEEE (1997)Google Scholar
  118. 118.
    Yoshitomi, Y., Kim, S.I., Kawano, T., Kilazoe, T.: Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings, 9th IEEE International Workshop on Robot and Human Interactive Communication, RO-MAN 2000, pp. 178–183. IEEE (2000)Google Scholar
  119. 119.
    Lee, C.M., Narayanan, S.S.: Toward detecting emotions in spoken dialogs. IEEE Trans. Speech Audio Process. 13(2), 293–303 (2005)CrossRefGoogle Scholar
  120. 120.
    Vyzas, E., Picard, R.W.: Affective pattern classification. In: Proceeding AAAI Fall Symposium Series: Emotional and Intelligent: The Tangled Knot of Cognition, pp. 176–182 (1998)Google Scholar
  121. 121.
    Wagner, J., Kim, J., André, E.: From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 940–943. IEEE (2005)Google Scholar
  122. 122.
    Yannakakis, G.N., Martínez, H.P., Jhala, A.: Towards affective camera control in games. User Model. User-Adap. Inter. 20(4), 313–340 (2010)CrossRefGoogle Scholar
  123. 123.
    Martínez, H.P., Yannakakis, G.N.: Genetic search feature selection for affective modeling: a case study on reported preferences. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 15–20. ACM(2010)Google Scholar
  124. 124.
    Stuhlsatz, A., Meyer, C., Eyben, F., ZieIke, T., Meier, G., Schuller, B.: Deep neural networks for acoustic emotion recognition: raising the benchmarks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5688–5691. IEEE (2011)Google Scholar
  125. 125.
    Stuhlsatz, A., Lippel, J., Zielke, T.: Discriminative feature extraction with deep neural networks. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)Google Scholar
  126. 126.
    Martinez, H.P., Bengio, Y., Yannakakis, G.N.: Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 8(2), 20–33 (2013)CrossRefGoogle Scholar
  127. 127.
    LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361(10) (1995)Google Scholar
  128. 128.
    Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks 16(5), 555–559 (2003)CrossRefGoogle Scholar
  129. 129.
    Rifai, S., Bengio, Y., Courville, A., Vincent, P., Mirza, M.: Disentangling factors of variation for facial expression recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 808–822. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33783-3_58 CrossRefGoogle Scholar
  130. 130.
    Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (cast). Entropy 18(4) (2016)Google Scholar
  131. 131.
    Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)CrossRefGoogle Scholar
  132. 132.
    Bachler, M., Mayer, C., Hametner, B., Wassertheurer, S., Holzinger, A.: Online and offline determination of QT and PR interval and QRS duration in electrocardiography. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 1–15. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37015-1_1 CrossRefGoogle Scholar
  133. 133.
    Saxena, S., Kumar, V., Hamde, S.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33(13), 1073–1085 (2002)zbMATHCrossRefGoogle Scholar
  134. 134.
    Saritha, C., Sukanya, V., Murthy, Y.N.: ECG signal analysis using wavelet transforms. Bulg. J. Phys 35(1), 68–77 (2008)zbMATHGoogle Scholar
  135. 135.
    Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: ICNN&B 2005, International Conference on Neural Networks and Brain, vol. 2, pp. 1089–1092. IEEE (2005)Google Scholar
  136. 136.
    Übeyli, E.D.: Ecg beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Proc. 17(3), 675–684 (2007)CrossRefGoogle Scholar
  137. 137.
    Yu, S.N., Chen, Y.H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10), 1142–1150 (2007)CrossRefGoogle Scholar
  138. 138.
    Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K.: Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4), 571 (2005)Google Scholar
  139. 139.
    Martis, R.J., Chakraborty, C., Ray, A.K.: An integrated ecg feature extraction scheme using pca and wavelet transform. In: 2009 Annual IEEE India Conference (INDICON), pp. 1–4. IEEE (2009)Google Scholar
  140. 140.
    Yu, S.N., Chou, K.T.: Selection of significant independent components for ECG beat classification. Expert Syst. Appl. 36(2), 2088–2096 (2009)CrossRefGoogle Scholar
  141. 141.
    Kiranyaz, S., Ince, T., Gabbouj, M.: Real-Time Patient-Specific ECG Classification by 1D Convolutional Neural Networks (2015)Google Scholar
  142. 142.
    Yang, J., Bai, Y., Li, G., Liu, M., Liu, X.: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med. Mater. Eng. 26(s1), 1549–1558 (2015)CrossRefGoogle Scholar
  143. 143.
    Yan, Y., Qin, X., Wu, Y., Zhang, N., Fan, J., Wang, L.: A restricted boltzmann machine based two-lead electrocardiography classification. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–9. IEEE (2015)Google Scholar
  144. 144.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10590-1_53 Google Scholar
  145. 145.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3, 1–13 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Akara Supratak
    • 1
  • Chao Wu
    • 1
  • Hao Dong
    • 1
  • Kai Sun
    • 1
  • Yike Guo
    • 1
    Email author
  1. 1.William Penney Laboratory, Data Science InstituteImperial College LondonLondonUK

Personalised recommendations