Abstract
Identifying measurable genetic indicators (or biomarkers) of a specific condition of a biological system is a key element of precision medicine. Indeed it allows to tailor diagnostic, prognostic and treatment choice to individual characteristics of a patient. In machine learning terms, biomarker discovery can be framed as a feature selection problem on whole-genome data sets. However, classical feature selection methods are usually underpowered to process these data sets, which contain orders of magnitude more features than samples. This can be addressed by making the assumption that genetic features that are linked on a biological network are more likely to work jointly towards explaining the phenotype of interest. We review here three families of methods for feature selection that integrate prior knowledge in the form of networks.
Keywords
- Biological networks
- Structured sparsity
- Feature selection
- Biomarker discovery
This is a preview of subscription content, access via your institution.
Buying options

References
Spear, B.B., Heath-Chiozzi, M., Huff, J.: Clinical application of pharmacogenetics. Trends Mol. Med. 7(5), 201–204 (2001)
Reuter, J., Spacek, D.V., Snyder, M.: High-throughput sequencing technologies. Molecular Cell 58(4), 586–597 (2015)
Van Allen, E.M., Wagle, N., Levy, M.A.: Clinical analysis and interpretation of cancer genome data. J. Clin. Oncol. 31(15), 1825–1833 (2013)
Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009)
Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf. 3(2), 119–131 (2016)
Hund, M., Böhm, D., Sturm, W., Sedlmair, M., et al.: Visual analytics for concept exploration in subspaces of patient groups. Brain Inf. 3(4), 233–247 (2016). doi:10.1007/s40708-016-0043-5
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., et al.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue), D447–452 (2015)
Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., et al.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(Database issue), D470–478 (2015)
Kuperstein, I., Bonnet, E., Nguyen, H.A., Cohen, D., et al.: Atlas of cancer signalling network: a systems biology resource for integrative analysis of cancer data with Google Maps. Oncogenesis 4(7), e160 (2015)
Azencott, C.A., Grimm, D., Sugiyama, M., Kawahara, Y., Borgwardt, K.M.: Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics 29(13), i171–i179 (2013)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn Res. 3, 1157–1182 (2003)
Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton (2015)
Bush, W.S., Moore, J.H.: Chapter 11: genome-wide association studies. PLoS Comput. Biol. 8(12), e1002822 (2012)
Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994)
Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45167-9_12
Fujishige, S.: Submodular Functions and Optimization. Elsevier, Amsterdam (2005)
Bach, F.: Learning with submodular functions: a convex optimization perspective. Found. Trends Mach. Learn. 6(2–3), 145–373 (2013)
Thornton, T.: Statistical methods for genome-wide and sequencing association studies of complex traits in related samples. Curr. Protoc. Hum. Genet. 84, 1.28.1–1.28.9 (2015)
Liu, J., Wang, K., Ma, S., Huang, J.: Accounting for linkage disequilibrium in genome-wide association studies: a penalized regression method. Statist. Interface 6(1), 99–115 (2013)
Lee, S., Abecasis, G., Boehnke, M., Lin, X.: Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95(1), 5–23 (2014)
Liu, J.Z., Mcrae, A.F., Nyholt, D.R., Medland, S.E., et al.: A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87(1), 139–145 (2010)
Jia, P., Wang, L., Fanous, A.H., Pato, C.N., Edwards, T.L., Zhao, Z.: The International Schizophrenia Consortium: network-assisted investigation of combined causal signals from Genome-Wide Association Studies in schizophrenia. PLoS Comput. Biol. 8(7), e1002587 (2012)
Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)
Baranzini, S.E., Galwey, N.W., Wang, J., Khankhanian, P., et al.: Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18(11), 2078–2090 (2009)
Wang, L., Matsushita, T., Madireddy, L., Mousavi, P., Baranzini, S.E.: PINBPA: Cytoscape app for network analysis of GWAS data. Bioinformatics 31(2), 262–264 (2015)
Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl 1), S233–S240 (2002)
Taşan, M., Musso, G., Hao, T., Vidal, M., MacRae, C.A., Roth, F.P.: Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nat. Methods 12(2), 154–159 (2015)
Mitra, K., Carvunis, A.R., Ramesh, S.K., Ideker, T.: Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14(10), 719–732 (2013)
Akula, N., Baranova, A., Seto, D., Solka, J., et al.: A network-based approach to prioritize results from genome-wide association studies. PLoS ONE 6(9), e24220 (2011)
Marchini, J., Donnelly, P., Cardon, L.R.: Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet. 37(4), 413–417 (2005)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58, 267–288 (1994)
Wu, T.T., Chen, Y.F., Hastie, T., Sobel, E., Lange, K.: Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25(6), 714–721 (2009)
Zhou, H., Sehl, M.E., Sinsheimer, J.S., Lange, K.: Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26(19), 2375–2382 (2010)
Chen, L.S., Hutter, C.M., Potter, J.D., Liu, Y., Prentice, R.L., Peters, U., Hsu, L.: Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am. J. Hum. Genet. 86(6), 860–871 (2010)
Zhao, J., Gupta, S., Seielstad, M., Liu, J., Thalamuthu, A.: Pathway-based analysis using reduced gene subsets in genome-wide association studies. BMC Bioinf. 12, 17 (2011)
Silver, M., Montana, G.: Alzheimer’s disease neuroimaging initiative: fast identification of biological pathways associated with a quantitative trait using group lasso with overlaps. Stat. Appl. Genet. Mol. Biol. 11(1), 7 (2012)
Huang, J., Zhang, T., Metaxas, D.: Learning with structured sparsity. J. Mach. Learn. Res. 12, 3371–3412 (2011)
Micchelli, C.A., Morales, J.M., Pontil, M.: Regularizers for structured sparsity. Adv. Comput. Math. 38(3), 455–489 (2013)
Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 433–440. ACM (2009)
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc. B 67(1), 91–108 (2005)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)
Xin, B., Kawahara, Y., Wang, Y., Gao, W.: Efficient generalized fused lasso and its application to the diagnosis of Alzheimer’s disease. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)
Li, C., Li, H.: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9), 1175–1182 (2008)
Li, C., Li, H.: Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann. Appl. Stat. 4(3), 1498–1516 (2010)
Sokolov, A., Carlin, D.E., Paull, E.O., Baertsch, R., Stuart, J.M.: Pathway-based genomics prediction using generalized elastic net. PLoS Comput. Biol. 12(3), e1004790 (2016)
Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)
Yang, S., Yuan, L., Lai, Y.C., Shen, X., et al.: Feature grouping and selection over an undirected graph. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 922–930. ACM (2012)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Wang, Z., Montana, G.: The graph-guided group lasso for genome-wide association studies. In: Regularization, Optimization, Kernels, and Support Vector Machines, pp. 131–157 (2014)
Dernoncourt, D., Hanczar, B., Zucker, J.D.: Analysis of feature selection stability on high dimension and small sample data. Comput. Stat. Data Anal. 71, 681–693 (2014)
Haury, A.C., Gestraud, P., Vert, J.P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE 6(12), e28210 (2011)
Kuncheva, L., Smith, C., Syed, Y., Phillips, C., Lewis, K.: Evaluation of feature ranking ensembles for high-dimensional biomedical data: a case study. In: 2012 IEEE 12th International Conference on Data Mining Workshops, pp. 49–56 (2012)
Bach, F.: Structured sparsity-inducing norms through submodular functions. In: 24th Annual Conference on Neural Information Processing Systems 2010 (2010)
Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Prog. 118(2), 237–251 (2009)
Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Roy. Stat. Soc. B 51(2), 271–279 (1989)
Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)
Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M., Lin, X.: Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89(1), 82–93 (2011)
Kuncheva, L.I.: A stability index for feature selection. In: Proceedings of the 25th Conference on Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, pp. 390–395. ACTA Press (2007)
Park, S.H., Lee, J.Y., Kim, S.: A methodology for multivariate phenotype-based genome-wide association studies to mine pleiotropic genes. BMC Syst. Biol. 5(2), 1–14 (2011)
O’Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C.F., Elliott, P., Jarvelin, M.R., Coin, L.J.M.: MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE 7(5), e34861 (2012)
Eduati, F., Mangravite, L.M., Wang, T., Tang, H., et al.: Prediction of human population responses to toxic compounds by a collaborative competition. Nat. Biotechnol. 33(9), 933–940 (2015)
Cheng, W., Zhang, X., Guo, Z., Shi, Y., Wang, W.: Graph-regularized dual lasso for robust eQTL mapping. Bioinformatics 30(12), i139–i148 (2014)
Obozinski, G., Taskar, B., Jordan, M.I.: Multi-task feature selection. Technical report, UC Berkeley (2006)
Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.: Multi-task feature selection on multiple networks via maximum flows. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 199–207 (2014)
Kim, S., Xing, E.P.: Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genet. 5(8), e1000587 (2009)
Wang, Z., Curry, E., Montana, G.: Network-guided regression for detecting associations between DNA methylation and gene expression. Bioinformatics 30(19), 2693–2701 (2014)
Fei, H., Huan, J.: Structured feature selection and task relationship inference for multi-task learning. Knowl. Inf. Syst. 35(2), 345–364 (2013)
Swirszcz, G., Lozano, A.C.: Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Conference on Machine Learning (ICML 2012), pp. 361–368 (2012)
Bellon, V., Stoven, V., Azencott, C.A.: Multitask feature selection with task descriptors. In: Pacific Symposium on Biocomputing, vol. 21, pp. 261–272 (2016)
Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)
Larson, N.B., Jenkins, G.D., Larson, M.C., Sellers, T.A., Sellers, T.A., et al.: Kernel canonical correlation analysis for assessing genegene interactions and application to ovarian cancer. Eur. J. Hum. Genet. 22(1), 126–131 (2014)
Williams, S.M., Ritchie, M.D., Phillips, J.A., Dawson, E., et al.: Multilocus analysis of hypertension: a hierarchical approach. Hum. Hered. 57(1), 28–38 (2004)
Cho, Y.M., Ritchie, M.D., Moore, J.H., Park, J.Y., et al.: Multifactor-dimensionality reduction shows a two-locus interaction associated with type 2 diabetes mellitus. Diabetologia 47(3), 549–554 (2004)
Niel, C., Sinoquet, C., Dina, C., Rocheleau, G.: A survey about methods dedicated to epistasis detection. J. Bioinf. Comput. Biol. 6, 285 (2015)
Yoshida, M., Koike, A.: SNPInterForest: a new method for detecting epistatic interactions. BMC Bioinf. 12(1), 469 (2011)
Stephan, J., Stegle, O., Beyer, A.: A random forest approach to capture genetic effects in the presence of population structure. Nat. Commun. 6, 7432 (2015)
Beam, A.L., Motsinger-Reif, A., Doyle, J.: Bayesian neural networks for detecting epistasis in genetic association studies. BMC Bioinf. 15(1), 368 (2014)
Drouin, A., Giguère, S., Sagatovich, V., Déraspe, M., et al.: Learning interpretable models of phenotypes from whole genome sequences with the Set Covering Machine (2014). arXiv:1412.1074 [cs, q-bio, stat]
Marchand, M., Shawe-Taylor, J.: The set covering machine. J. Mach. Learn. Res. 3, 723–746 (2002)
He, Z., Yu, W.: Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34(4), 215–225 (2010)
Ma, S., Huang, J., Moran, M.S.: Identification of genes associated with multiple cancers via integrative analysis. BMC Genom. 10, 535 (2009)
Yu, L., Ding, C., Loscalzo, S.: Stable feature selection via dense feature groups. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 803–811. ACM (2008)
Meinshausen, N., Bühlmann, P.: Stability selection. J. Roy. Stat. Soc. B 72(4), 417–473 (2010)
Shah, R.D., Samworth, R.J.: Variable selection with error control: another look at stability selection. J. Roy. Stat. Soc. B 75(1), 55–80 (2013)
Han, Y., Yu, L.: A variance reduction framework for stable feature selection. Stat. Anal. Data Min. 5(5), 428–445 (2012)
Llinares-López, F., Grimm, D.G., Bodenham, D.A., Gieraths, U., et al.: Genome-wide detection of intervals of genetic heterogeneity associated with complex traits. Bioinformatics 31(12), i240–i249 (2015)
Belilovsky, E., Varoquaux, G., Blaschko, M.B.: Testing for differences in Gaussian graphical models: applications to brain connectivity. In: Lee, D.D., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29 (2016)
Tur, I., Roverato, A., Castelo, R.: Mapping eQTL networks with mixed graphical markov models. Genetics 198(4), 1377–1393 (2014)
Sandhu, K., Li, G., Poh, H., Quek, Y., et al.: Large-scale functional organization of long-range chromatin interaction networks. Cell. Rep. 2(5), 1207–1219 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Azencott, CA. (2016). Network-Guided Biomarker Discovery. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-50478-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50477-3
Online ISBN: 978-3-319-50478-0
eBook Packages: Computer ScienceComputer Science (R0)